Connect with us

AI

3 Tech Tips for Businesses During Lockdown

With no definite end in sight for the current pandemic, most businesses have been forced into a work from home ethos. Many business owners have seen the benefits of this approach and are gearing up to make a move permanent. There are a couple of immediate challenges that need to be addressed, particularly in terms […]

The post 3 Tech Tips for Businesses During Lockdown appeared first on AIIOT – Artificial Intelligence | Internet of Things | Technology.

Published

on

With no definite end in sight for the current pandemic, most businesses have been forced into a work from home ethos. Many business owners have seen the benefits of this approach and are gearing up to make a move permanent. There are a couple of immediate challenges that need to be addressed, particularly in terms of technological requirements.

Fortunately, many companies specialise in large scale networking equipment and service. We found some of the information on Gescan Datacom Solutions’ website a big help for getting an idea of precisely the sort of systems your business can benefit from inevitably. 

With practical tech solutions available to resolve any challenge you may find in migrating to a remote working system, we have put together a quick guide on some of the most essential and useful considerations.

Dedicated Equipment 

An extremely prudent measure to take is to equip staff with dedicated work devices. This may seem costly at first, but the long term benefits will more than justify the expense. A primary distraction for anyone has to interact with personal devices such as smartphones or tablets continually.

“Providing staff with company-owned devices allows you to mitigate this issue. More importantly, it will enable you to set security measures. Having confidential data on an employee’s private phone is a risk” 

Regardless of an individual’s trustworthiness, they may not be prudent about taking security precautions. It is not entirely fair to expect an employee to take additional precautions with their property either. A company-owned device can be issued under the contractual agreement of due diligence. 

Online Office Tools 

Speaking of G-Suit, you will need a flexible and easy to use set of online productivity tools. Both Microsoft and Google have offerings to cover this requirement. We recommend using GSuit for ease of use and practicality. At incredibly affordable rates, you can put together a custom solution suited to your needs. 

As part of the package, you will receive anything from 100GB to unlimited cloud storage, depending on your subscription. This means safe and accessible online storage for all your staff. You can set permissions for individual staff members to access or view only specific documents or folders. 

With no expertise, you can create different file locations, not only for individual staff members but for divisions as well. Combine this flexibility with email functionality, customised and routed through your business website domain, and you will appreciate the value for money. That is without mentioning Google Duo and Hangouts conferencing and live collaborative document editing, from basic text to spreadsheets.

Project Management Solutions 

Even with all the tools in place, and dedicated remote staff, management may struggle without a means to set clear direction and monitor staff performance. While there are several solutions, Trello is a popular choice. This platform integrates seamlessly with Google services through the use of simple in-app plug-ins. It is available on Mac, Windows, iOS and Android.

With fantastic ease of use, Trello allows management to set project goals in the form of interactive, listed cards. Deadlines are easily managed and monitored with the previously mentioned Google integration. Checklists can be added to cards, and all tasks can be shared with specific team members, with labels and a notes section to clarify task designation.

Also, Read Tips to Protect your Business Reputation

Source: https://www.aiiottalk.com/business/tips-for-businesses-during-lockdown/

AI

Arcanum makes Hungarian heritage accessible with Amazon Rekognition

Arcanum specializes in digitizing Hungarian language content, including newspapers, books, maps, and art. With over 30 years of experience, Arcanum serves more than 30,000 global subscribers with access to Hungarian culture, history, and heritage. Amazon Rekognition Solutions Architects worked with Arcanum to add highly scalable image analysis to Hungaricana, a free service provided by Arcanum, […]

Published

on

Arcanum specializes in digitizing Hungarian language content, including newspapers, books, maps, and art. With over 30 years of experience, Arcanum serves more than 30,000 global subscribers with access to Hungarian culture, history, and heritage.

Amazon Rekognition Solutions Architects worked with Arcanum to add highly scalable image analysis to Hungaricana, a free service provided by Arcanum, which enables you to search and explore Hungarian cultural heritage, including 600,000 faces over 500,000 images. For example, you can find historical works by author Mór Jókai or photos on topics like weddings. The Arcanum team chose Amazon Rekognition to free valuable staff from time and cost-intensive manual labeling, and improved label accuracy to make 200,000 previously unsearchable images (approximately 40% of image inventory), available to users.

Amazon Rekognition makes it easy to add image and video analysis to your applications using highly scalable machine learning (ML) technology that requires no previous ML expertise to use. Amazon Rekognition also provides highly accurate facial recognition and facial search capabilities to detect, analyze, and compare faces.

Arcanum uses this facial recognition feature in their image database services to help you find particular people in Arcanum’s articles. This post discusses their challenges and why they chose Amazon Rekognition as their solution.

Automated image labeling challenges

Arcanum dedicated a team of three people to start tagging and labeling content for Hungaricana. The team quickly learned that they would need to invest more than 3 months of time-consuming and repetitive human labor to provide accurate search capabilities to their customers. Considering the size of the team and scope of the existing project, Arcanum needed a better solution that would automate image and object labelling at scale.

Automated image labeling solutions

To speed up and automate image labeling, Arcanum turned to Amazon Rekognition to enable users to search photos by keywords (for example, type of historic event, place name, or a person relevant to Hungarian history).

For the Hungaricana project, preprocessing all the images was challenging. Arcanum ran a TensorFlow face search across all 28 million pages on a machine with 8 GPUs in their own offices to extract only faces from images.

The following screenshot shows what an extract looks like (image provided by Arcanum Database Ltd).

The images containing only faces are sent to Amazon Rekognition, invoking the IndexFaces operation to add a face to the collection. For each face that is detected in the specified face collection, Amazon Rekognition extracts facial features into a feature vector and stores it in an Amazon Aurora database. Amazon Rekognition uses feature vectors when it performs face match and search operations using the SearchFaces and SearchFacesByImage operations.

The image preprocessing helped create a very efficient and cost-effective way to index faces. The following diagram summarizes the preprocessing workflow.

As for the web application, the workflow starts with a Hungaricana user making a face search request. The following diagram illustrates the application workflow.

The workflow includes the following steps:

  1. The user requests a facial match by uploading the image. The web request is automatically distributed by the Elastic Load Balancer to the webserver fleet.
  2. Amazon Elastic Compute Cloud (Amazon EC2) powers application servers that handle the user request.
  3. The uploaded image is stored in Amazon Simple Storage Service (Amazon S3).
  4. Amazon Rekognition indexes the face and runs SearchFaces to look for a face similar to the new face ID.
  5. The output of the search face by image operation is stored in Amazon ElastiCache, a fully managed in-memory data store.
  6. The metadata of the indexed faces are stored in an Aurora relational database built for the cloud.
  7. The resulting face thumbnails are served to the customer via the fast content-delivery network (CDN) service Amazon CloudFront.

Experimenting and live testing Hungaricana

During our test of Hungaricana, the application performed extremely well. The searches not only correctly identified people, but also provided links to all publications and sources in Arcanum’s privately owned database where found faces are present. For example, the following screenshot shows the result of the famous composer and pianist Franz Liszt.

The application provided 42 pages of 6×4 results. The results are capped to 1,000. The 100% scores are the confidence scores returned by Amazon Rekognition and are rounded up to whole numbers.

The application of Hungaricana has always promptly, and with a high degree of certainty, presented results and links to all corresponding publications.

Business results

By introducing Amazon Rekognition into their workflow, Arcanum enabled a better customer experience, including building family trees, searching for historical figures, and researching historical places and events.

The concept of face searching using artificial intelligence certainly isn’t new. But Hungaricana uses it in a very creative, unique way.

Amazon Rekognition allowed Arcanum to realize three distinct advantages:

  • Time savings – The time to market speed increased dramatically. Now, instead of spending several months of intense manual labor to label all the images, the company can do this job in a few days. Before, basic labeling on 150,000 images took months for three people to complete.
  • Cost savings – Arcanum saved around $15,000 on the Hungaricana project. Before using Amazon Rekognition, there was no automation, so a human workforce had to scan all the images. Now, employees can shift their focus to other high-value tasks.
  • Improved accuracy – Users now have a much better experience regarding hit rates. Since Arcanum started using Amazon Rekognition, the number of hits has doubled. Before, out of 500,000 images, about 200,000 weren’t searchable. But with Amazon Rekognition, search is now possible for all 500,000 images.

 “Amazon Rekognition made Hungarian culture, history, and heritage more accessible to the world,” says Előd Biszak, Arcanum CEO. “It has made research a lot easier for customers building family trees, searching for historical figures, and researching historical places and events. We cannot wait to see what the future of artificial intelligence has to offer to enrich our content further.”

Conclusion

In this post, you learned how to add highly scalable face and image analysis to an enterprise-level image gallery to improve label accuracy, reduce costs, and save time.

You can test Amazon Rekognition features such as facial analysis, face comparison, or celebrity recognition on images specific to your use case on the Amazon Rekognition console.

For video presentations and tutorials, see Getting Started with Amazon Rekognition. For more information about Amazon Rekognition, see Amazon Rekognition Documentation.


About the Authors

Siniša Mikašinović is a Senior Solutions Architect at AWS Luxembourg, covering Central and Eastern Europe—a region full of opportunities, talented and innovative developers, ISVs, and startups. He helps customers adopt AWS services as well as acquire new skills, learn best practices, and succeed globally with the power of AWS. His areas of expertise are Game Tech and Microsoft on AWS. Siniša is a PowerShell enthusiast, a gamer, and a father of a small and very loud boy. He flies under the flags of Croatia and Serbia.

Cameron Peron is Senior Marketing Manager for AWS Amazon Rekognition and the AWS AI/ML community. He evangelizes how AI/ML innovation solves complex challenges facing community, enterprise, and startups alike. Out of the office, he enjoys staying active with kettlebell-sport, spending time with his family and friends, and is an avid fan of Euro-league basketball.

Source: https://aws.amazon.com/blogs/machine-learning/arcanum-makes-hungarian-heritage-accessible-with-amazon-rekognition/

Continue Reading

AI

Arcanum makes Hungarian heritage accessible with Amazon Rekognition

Arcanum specializes in digitizing Hungarian language content, including newspapers, books, maps, and art. With over 30 years of experience, Arcanum serves more than 30,000 global subscribers with access to Hungarian culture, history, and heritage. Amazon Rekognition Solutions Architects worked with Arcanum to add highly scalable image analysis to Hungaricana, a free service provided by Arcanum, […]

Published

on

Arcanum specializes in digitizing Hungarian language content, including newspapers, books, maps, and art. With over 30 years of experience, Arcanum serves more than 30,000 global subscribers with access to Hungarian culture, history, and heritage.

Amazon Rekognition Solutions Architects worked with Arcanum to add highly scalable image analysis to Hungaricana, a free service provided by Arcanum, which enables you to search and explore Hungarian cultural heritage, including 600,000 faces over 500,000 images. For example, you can find historical works by author Mór Jókai or photos on topics like weddings. The Arcanum team chose Amazon Rekognition to free valuable staff from time and cost-intensive manual labeling, and improved label accuracy to make 200,000 previously unsearchable images (approximately 40% of image inventory), available to users.

Amazon Rekognition makes it easy to add image and video analysis to your applications using highly scalable machine learning (ML) technology that requires no previous ML expertise to use. Amazon Rekognition also provides highly accurate facial recognition and facial search capabilities to detect, analyze, and compare faces.

Arcanum uses this facial recognition feature in their image database services to help you find particular people in Arcanum’s articles. This post discusses their challenges and why they chose Amazon Rekognition as their solution.

Automated image labeling challenges

Arcanum dedicated a team of three people to start tagging and labeling content for Hungaricana. The team quickly learned that they would need to invest more than 3 months of time-consuming and repetitive human labor to provide accurate search capabilities to their customers. Considering the size of the team and scope of the existing project, Arcanum needed a better solution that would automate image and object labelling at scale.

Automated image labeling solutions

To speed up and automate image labeling, Arcanum turned to Amazon Rekognition to enable users to search photos by keywords (for example, type of historic event, place name, or a person relevant to Hungarian history).

For the Hungaricana project, preprocessing all the images was challenging. Arcanum ran a TensorFlow face search across all 28 million pages on a machine with 8 GPUs in their own offices to extract only faces from images.

The following screenshot shows what an extract looks like (image provided by Arcanum Database Ltd).

The images containing only faces are sent to Amazon Rekognition, invoking the IndexFaces operation to add a face to the collection. For each face that is detected in the specified face collection, Amazon Rekognition extracts facial features into a feature vector and stores it in an Amazon Aurora database. Amazon Rekognition uses feature vectors when it performs face match and search operations using the SearchFaces and SearchFacesByImage operations.

The image preprocessing helped create a very efficient and cost-effective way to index faces. The following diagram summarizes the preprocessing workflow.

As for the web application, the workflow starts with a Hungaricana user making a face search request. The following diagram illustrates the application workflow.

The workflow includes the following steps:

  1. The user requests a facial match by uploading the image. The web request is automatically distributed by the Elastic Load Balancer to the webserver fleet.
  2. Amazon Elastic Compute Cloud (Amazon EC2) powers application servers that handle the user request.
  3. The uploaded image is stored in Amazon Simple Storage Service (Amazon S3).
  4. Amazon Rekognition indexes the face and runs SearchFaces to look for a face similar to the new face ID.
  5. The output of the search face by image operation is stored in Amazon ElastiCache, a fully managed in-memory data store.
  6. The metadata of the indexed faces are stored in an Aurora relational database built for the cloud.
  7. The resulting face thumbnails are served to the customer via the fast content-delivery network (CDN) service Amazon CloudFront.

Experimenting and live testing Hungaricana

During our test of Hungaricana, the application performed extremely well. The searches not only correctly identified people, but also provided links to all publications and sources in Arcanum’s privately owned database where found faces are present. For example, the following screenshot shows the result of the famous composer and pianist Franz Liszt.

The application provided 42 pages of 6×4 results. The results are capped to 1,000. The 100% scores are the confidence scores returned by Amazon Rekognition and are rounded up to whole numbers.

The application of Hungaricana has always promptly, and with a high degree of certainty, presented results and links to all corresponding publications.

Business results

By introducing Amazon Rekognition into their workflow, Arcanum enabled a better customer experience, including building family trees, searching for historical figures, and researching historical places and events.

The concept of face searching using artificial intelligence certainly isn’t new. But Hungaricana uses it in a very creative, unique way.

Amazon Rekognition allowed Arcanum to realize three distinct advantages:

  • Time savings – The time to market speed increased dramatically. Now, instead of spending several months of intense manual labor to label all the images, the company can do this job in a few days. Before, basic labeling on 150,000 images took months for three people to complete.
  • Cost savings – Arcanum saved around $15,000 on the Hungaricana project. Before using Amazon Rekognition, there was no automation, so a human workforce had to scan all the images. Now, employees can shift their focus to other high-value tasks.
  • Improved accuracy – Users now have a much better experience regarding hit rates. Since Arcanum started using Amazon Rekognition, the number of hits has doubled. Before, out of 500,000 images, about 200,000 weren’t searchable. But with Amazon Rekognition, search is now possible for all 500,000 images.

 “Amazon Rekognition made Hungarian culture, history, and heritage more accessible to the world,” says Előd Biszak, Arcanum CEO. “It has made research a lot easier for customers building family trees, searching for historical figures, and researching historical places and events. We cannot wait to see what the future of artificial intelligence has to offer to enrich our content further.”

Conclusion

In this post, you learned how to add highly scalable face and image analysis to an enterprise-level image gallery to improve label accuracy, reduce costs, and save time.

You can test Amazon Rekognition features such as facial analysis, face comparison, or celebrity recognition on images specific to your use case on the Amazon Rekognition console.

For video presentations and tutorials, see Getting Started with Amazon Rekognition. For more information about Amazon Rekognition, see Amazon Rekognition Documentation.


About the Authors

Siniša Mikašinović is a Senior Solutions Architect at AWS Luxembourg, covering Central and Eastern Europe—a region full of opportunities, talented and innovative developers, ISVs, and startups. He helps customers adopt AWS services as well as acquire new skills, learn best practices, and succeed globally with the power of AWS. His areas of expertise are Game Tech and Microsoft on AWS. Siniša is a PowerShell enthusiast, a gamer, and a father of a small and very loud boy. He flies under the flags of Croatia and Serbia.

Cameron Peron is Senior Marketing Manager for AWS Amazon Rekognition and the AWS AI/ML community. He evangelizes how AI/ML innovation solves complex challenges facing community, enterprise, and startups alike. Out of the office, he enjoys staying active with kettlebell-sport, spending time with his family and friends, and is an avid fan of Euro-league basketball.

Source: https://aws.amazon.com/blogs/machine-learning/arcanum-makes-hungarian-heritage-accessible-with-amazon-rekognition/

Continue Reading

AI

Arcanum makes Hungarian heritage accessible with Amazon Rekognition

Arcanum specializes in digitizing Hungarian language content, including newspapers, books, maps, and art. With over 30 years of experience, Arcanum serves more than 30,000 global subscribers with access to Hungarian culture, history, and heritage. Amazon Rekognition Solutions Architects worked with Arcanum to add highly scalable image analysis to Hungaricana, a free service provided by Arcanum, […]

Published

on

Arcanum specializes in digitizing Hungarian language content, including newspapers, books, maps, and art. With over 30 years of experience, Arcanum serves more than 30,000 global subscribers with access to Hungarian culture, history, and heritage.

Amazon Rekognition Solutions Architects worked with Arcanum to add highly scalable image analysis to Hungaricana, a free service provided by Arcanum, which enables you to search and explore Hungarian cultural heritage, including 600,000 faces over 500,000 images. For example, you can find historical works by author Mór Jókai or photos on topics like weddings. The Arcanum team chose Amazon Rekognition to free valuable staff from time and cost-intensive manual labeling, and improved label accuracy to make 200,000 previously unsearchable images (approximately 40% of image inventory), available to users.

Amazon Rekognition makes it easy to add image and video analysis to your applications using highly scalable machine learning (ML) technology that requires no previous ML expertise to use. Amazon Rekognition also provides highly accurate facial recognition and facial search capabilities to detect, analyze, and compare faces.

Arcanum uses this facial recognition feature in their image database services to help you find particular people in Arcanum’s articles. This post discusses their challenges and why they chose Amazon Rekognition as their solution.

Automated image labeling challenges

Arcanum dedicated a team of three people to start tagging and labeling content for Hungaricana. The team quickly learned that they would need to invest more than 3 months of time-consuming and repetitive human labor to provide accurate search capabilities to their customers. Considering the size of the team and scope of the existing project, Arcanum needed a better solution that would automate image and object labelling at scale.

Automated image labeling solutions

To speed up and automate image labeling, Arcanum turned to Amazon Rekognition to enable users to search photos by keywords (for example, type of historic event, place name, or a person relevant to Hungarian history).

For the Hungaricana project, preprocessing all the images was challenging. Arcanum ran a TensorFlow face search across all 28 million pages on a machine with 8 GPUs in their own offices to extract only faces from images.

The following screenshot shows what an extract looks like (image provided by Arcanum Database Ltd).

The images containing only faces are sent to Amazon Rekognition, invoking the IndexFaces operation to add a face to the collection. For each face that is detected in the specified face collection, Amazon Rekognition extracts facial features into a feature vector and stores it in an Amazon Aurora database. Amazon Rekognition uses feature vectors when it performs face match and search operations using the SearchFaces and SearchFacesByImage operations.

The image preprocessing helped create a very efficient and cost-effective way to index faces. The following diagram summarizes the preprocessing workflow.

As for the web application, the workflow starts with a Hungaricana user making a face search request. The following diagram illustrates the application workflow.

The workflow includes the following steps:

  1. The user requests a facial match by uploading the image. The web request is automatically distributed by the Elastic Load Balancer to the webserver fleet.
  2. Amazon Elastic Compute Cloud (Amazon EC2) powers application servers that handle the user request.
  3. The uploaded image is stored in Amazon Simple Storage Service (Amazon S3).
  4. Amazon Rekognition indexes the face and runs SearchFaces to look for a face similar to the new face ID.
  5. The output of the search face by image operation is stored in Amazon ElastiCache, a fully managed in-memory data store.
  6. The metadata of the indexed faces are stored in an Aurora relational database built for the cloud.
  7. The resulting face thumbnails are served to the customer via the fast content-delivery network (CDN) service Amazon CloudFront.

Experimenting and live testing Hungaricana

During our test of Hungaricana, the application performed extremely well. The searches not only correctly identified people, but also provided links to all publications and sources in Arcanum’s privately owned database where found faces are present. For example, the following screenshot shows the result of the famous composer and pianist Franz Liszt.

The application provided 42 pages of 6×4 results. The results are capped to 1,000. The 100% scores are the confidence scores returned by Amazon Rekognition and are rounded up to whole numbers.

The application of Hungaricana has always promptly, and with a high degree of certainty, presented results and links to all corresponding publications.

Business results

By introducing Amazon Rekognition into their workflow, Arcanum enabled a better customer experience, including building family trees, searching for historical figures, and researching historical places and events.

The concept of face searching using artificial intelligence certainly isn’t new. But Hungaricana uses it in a very creative, unique way.

Amazon Rekognition allowed Arcanum to realize three distinct advantages:

  • Time savings – The time to market speed increased dramatically. Now, instead of spending several months of intense manual labor to label all the images, the company can do this job in a few days. Before, basic labeling on 150,000 images took months for three people to complete.
  • Cost savings – Arcanum saved around $15,000 on the Hungaricana project. Before using Amazon Rekognition, there was no automation, so a human workforce had to scan all the images. Now, employees can shift their focus to other high-value tasks.
  • Improved accuracy – Users now have a much better experience regarding hit rates. Since Arcanum started using Amazon Rekognition, the number of hits has doubled. Before, out of 500,000 images, about 200,000 weren’t searchable. But with Amazon Rekognition, search is now possible for all 500,000 images.

 “Amazon Rekognition made Hungarian culture, history, and heritage more accessible to the world,” says Előd Biszak, Arcanum CEO. “It has made research a lot easier for customers building family trees, searching for historical figures, and researching historical places and events. We cannot wait to see what the future of artificial intelligence has to offer to enrich our content further.”

Conclusion

In this post, you learned how to add highly scalable face and image analysis to an enterprise-level image gallery to improve label accuracy, reduce costs, and save time.

You can test Amazon Rekognition features such as facial analysis, face comparison, or celebrity recognition on images specific to your use case on the Amazon Rekognition console.

For video presentations and tutorials, see Getting Started with Amazon Rekognition. For more information about Amazon Rekognition, see Amazon Rekognition Documentation.


About the Authors

Siniša Mikašinović is a Senior Solutions Architect at AWS Luxembourg, covering Central and Eastern Europe—a region full of opportunities, talented and innovative developers, ISVs, and startups. He helps customers adopt AWS services as well as acquire new skills, learn best practices, and succeed globally with the power of AWS. His areas of expertise are Game Tech and Microsoft on AWS. Siniša is a PowerShell enthusiast, a gamer, and a father of a small and very loud boy. He flies under the flags of Croatia and Serbia.

Cameron Peron is Senior Marketing Manager for AWS Amazon Rekognition and the AWS AI/ML community. He evangelizes how AI/ML innovation solves complex challenges facing community, enterprise, and startups alike. Out of the office, he enjoys staying active with kettlebell-sport, spending time with his family and friends, and is an avid fan of Euro-league basketball.

Source: https://aws.amazon.com/blogs/machine-learning/arcanum-makes-hungarian-heritage-accessible-with-amazon-rekognition/

Continue Reading
AI8 hours ago

Arcanum makes Hungarian heritage accessible with Amazon Rekognition

AI8 hours ago

Arcanum makes Hungarian heritage accessible with Amazon Rekognition

AI8 hours ago

Arcanum makes Hungarian heritage accessible with Amazon Rekognition

AI8 hours ago

Arcanum makes Hungarian heritage accessible with Amazon Rekognition

AI8 hours ago

Arcanum makes Hungarian heritage accessible with Amazon Rekognition

AI8 hours ago

Arcanum makes Hungarian heritage accessible with Amazon Rekognition

AI8 hours ago

Arcanum makes Hungarian heritage accessible with Amazon Rekognition

AI8 hours ago

Arcanum makes Hungarian heritage accessible with Amazon Rekognition

AI8 hours ago

Arcanum makes Hungarian heritage accessible with Amazon Rekognition

AI8 hours ago

Arcanum makes Hungarian heritage accessible with Amazon Rekognition

AI11 hours ago

Pros and Cons of using cloud platforms for building chatbots

AI11 hours ago

From Knowledge Databases To Knowledge Graphs And Conversational AI

AI12 hours ago

Model selection with cross-validation: A quest for an elite model

AI13 hours ago

Celebrating 10 Years of Innovation, Excellence, and Trust

AI23 hours ago

Executive Interview: Brian Gattoni, CTO, Cybersecurity & Infrastructure Security Agency 

AI23 hours ago

Making Use Of AI Ethics Tuning Knobs In AI Autonomous Cars 

AI23 hours ago

Application of AI to IT Service Ops by IBM and ServiceNow Exemplifies a Trend 

AI23 hours ago

Testing Finds Automated Driver Assistance Systems to be Unreliable 

AI23 hours ago

How  Veterans Would Study Machine Learning If He Had to Start Today 

AI23 hours ago

Forecasting for Fall Uncertainties 

Trending