Connect with us

AI

AWS DeepRacer Evo and Sensor Kit now available for purchase

AWS DeepRacer is a fully autonomous 1/18th scale race car powered by reinforcement learning (RL) that gives machine learning (ML) developers of all skill levels the opportunity to learn and build their ML skills in a fun and competitive way. AWS DeepRacer Evo includes new features and capabilities to help you learn more about ML […]

Published

on

AWS DeepRacer is a fully autonomous 1/18th scale race car powered by reinforcement learning (RL) that gives machine learning (ML) developers of all skill levels the opportunity to learn and build their ML skills in a fun and competitive way. AWS DeepRacer Evo includes new features and capabilities to help you learn more about ML through the addition of sensors that enable object avoidance and head-to-head racing. Starting today, while supplies last, developers can purchase AWS DeepRacer Evo for a limited-time, discounted price of $399, a savings of $199 off the regular bundle price of $598, and the AWS DeepRacer Sensor Kit for $149, a savings of $100 off the regular price of $249. Both are available on Amazon.com for shipping in the USA only.

What is AWS DeepRacer Evo?

AWS DeepRacer Evo is the next generation in autonomous racing. It comes fully equipped with stereo cameras and a LiDAR sensor to enable object avoidance and head-to-head racing, giving you everything you need to take your racing to the next level. These additional sensors allow for the car to handle more complex environments and take actions needed for new racing experiences. In object avoidance races, you use the sensors to detect and avoid obstacles placed on the track. In head-to-head, you race against another car on the same track and try to avoid it while still turning in the best lap time.

Forward-facing left and right cameras make up the stereo cameras, which help the car learn depth information in images. It can then use this information to sense and avoid objects it approaches on the track. The backward-facing LiDAR sensor detects objects behind and beside the car.

The AWS DeepRacer Evo car, available on Amazon.com, includes the original AWS DeepRacer car, an additional 4 megapixel camera module that forms stereo vision with the original camera, a scanning LiDAR, a shell that can fit both the stereo camera and LiDAR, and a few accessories and easy-to-use installation tools for a quick installation. If you already own an AWS DeepRacer car, you can upgrade your car to have the same capabilities as AWS DeepRacer Evo with the AWS DeepRacer Sensor Kit.

AWS DeepRacer Evo under the hood

The following table summarizes the details of AWS DeepRacer Evo.

CAR 1/18th scale 4WD monster truck chassis
CPU Intel Atom™ Processor
MEMORY 4 GB RAM
STORAGE 32 GB (expandable)
WI-FI 802.11ac
CAMERA 2 X 4 MP camera with MJPEG
LIDAR 360 degree 12 meters scanning radius LIDAR sensor
SOFTWARE Ubuntu OS 16.04.3 LTS, Intel® OpenVINO™ toolkit, ROS Kinetic
DRIVE BATTERY 7.4V/1100mAh lithium polymer
COMPUTE BATTERY 13600 mAh USB-C PD
PORTS 4x USB-A, 1x USB-C, 1x Micro-USB, 1x HDMI
INTEGRATED SENSORS Accelerometer and Gyroscope

Getting started with AWS DeepRacer Evo

You can get your car ready to hit the track in five simple (and fun) steps. For full instructions, see Getting Started with AWS DeepRacer.

Step 1: Install the sensor kit

The first step is to set up the car by reconfiguring the sensors. The existing camera shifts to one side to allow room for the second camera to create a stereo configuration, and the LiDAR is mounted on a bracket above the battery and connects via USB between the two cameras.

Step 2: Connect and test drive

Connect any device to the same Wi-Fi network as your AWS DeepRacer car and navigate to its IP address in your browser. After you upgrade to the latest software version, use the device console to take a test drive.

Step 3: Train a model

Now it’s time to get hands-on with ML by training an RL model on the AWS DeepRacer console. To create a model using the new AWS DeepRacer Evo sensors, select the appropriate sensor configuration in Your Garage, train and evaluate the model, clone, and iterate to improve the model’s performance.

Step 4: Load the model onto the device

You can download the model for the vehicle from the AWS DeepRacer console to your local computer, and then upload it to the AWS DeepRacer vehicle using the file you chose in the Models section on the AWS DeepRacer console.

Step 5: Start racing

Now the rubber hits the road! In the Control vehicle page on the device console, you can select autonomous driving, choose the model you want to race with, make adjustments, and choose Start vehicle to shift into gear!

Building a DIY track

Now you’re ready to race, and every race car needs a race track! For a fun activity, you can build a track for your AWS DeepRacer Evo at home.

  1. Lay down tape on one border of a straight line (your length varies depending on available space).
  2. Measure a width of approximately 24”, excluding the tape borders.
  3. Lay down a parallel line and match the length.
  4. Place the vehicle at one edge of the track and get ready to race!

After you build your track, you can train your model on the console and start racing. Try more challenging races by placing objects (such as a box or toy) on the track and moving them around.

For more information about building tracks, see AWS DeepRacer Track Design Templates.

When you have the basics down for racing the car, you can spend more time improving and getting around the track with greater success.

Optimizing racing performance

Whether you want to go faster, round corners more smoothly, or stop or start faster, model optimization is the key to success in object avoidance and head-to-head racing. You can also experiment with new strategies:

  • Defensive driver – Your car is penalized whenever its position is within a certain range to any other object
  • Blocker – When your car detects a car behind it, it’s incentivized to stay in the same lane to prevent passing

The level of training complexity and time also impact the behavior of the car in different situations. Variables like the number of botcars on the training track, whether botcars are static or moving, and how often they change lanes all affect the model’s performance. There is so much more you can do to train your model and have lots of fun!

Join the race to win glory and prizes!

There are plenty of chances to compete against your fellow racers right now! Submit your model to compete in the AWS DeepRacer Virtual Circuit and try out object avoidance and head-to-head racing. Throughout the 2020 season, the number of objects and bots on the track increases, requiring you to optimize your use of sensors to top the leaderboard. Hundreds of developers have extended their ML journey by competing in object avoidance and head-to-head Virtual Circuit races in 2020 so far.

For more information about an AWS DeepRacer competition from earlier in the year, check out the F1 ProAm DeepRacer event. You can also learn more about AWS DeepRacer in upcoming AWS Summit Online events. Sign in to the AWS DeepRacer console now to learn more and start your ML journey.


About the Author

Dan McCorriston is a Senior Product Marketing Manager for AWS Machine Learning. He is passionate about technology, collaborating with developers, and creating new methods of expanding technology education. Out of the office he likes to hike, cook and spend time with his family.

Source: https://aws.amazon.com/blogs/machine-learning/aws-deepracer-evo-and-sensor-kit-now-available-for-purchase/

AI

Bringing real-time machine learning-powered insights to rugby using Amazon SageMaker

The Guinness Six Nations Championship began in 1883 as the Home Nations Championship among England, Ireland, Scotland, and Wales, with the inclusion of France in 1910 and Italy in 2000. It is among the oldest surviving rugby traditions and one of the best-attended sporting events in the world. The COVID-19 outbreak disrupted the end of […]

Published

on

The Guinness Six Nations Championship began in 1883 as the Home Nations Championship among England, Ireland, Scotland, and Wales, with the inclusion of France in 1910 and Italy in 2000. It is among the oldest surviving rugby traditions and one of the best-attended sporting events in the world. The COVID-19 outbreak disrupted the end of the 2020 Championship and four games were postponed. The remaining rounds resumed on October 24. With the increasing application of artificial intelligence and machine learning (ML) in sports analytics, AWS and Stats Perform partnered to bring ML-powered, real-time stats to the game of rugby, to enhance fan engagement and provide valuable insights into the game.

This post summarizes the collaborative effort between the Guinness Six Nations Rugby Championship, Stats Perform, and AWS to develop an ML-driven approach with Amazon SageMaker and other AWS services that predicts the probability of a successful penalty kick, computed in real time and broadcast live during the game. AWS infrastructure enables single-digit millisecond latency for kick predictions during inference. The Kick Predictor stat is one of the many new AWS-powered, on-screen dynamic Matchstats that provide fans with a greater understanding of key in-game events, including scrum analysis, play patterns, rucks and tackles, and power game analysis. For more information about other stats developed for rugby using AWS services, see the Six Nations Rugby website.

Rugby is a form of football with a 23-player match day squad. 15 players on each team are on the field, with additional substitutions waiting to get involved in the full-contact sport. The objective of the game is to outscore the opposing team, and one way of scoring is to kick a goal. The ability to kick accurately is one of the most critical elements of rugby, and there are two ways to score with a kick: through a conversion (worth two points) and a penalty (worth three points).

Predicting the likelihood of a successful kick is important because it enhances fan engagement during the game by showing the success probability before the player kicks the ball. There are usually 40–60 seconds of stoppage time while the player sets up for the kick, during which the Kick Predictor stat can appear on-screen to fans. Commentators also have time to predict the outcome, quantify the difficulty of each kick, and compare kickers in similar situations. Moreover, teams may start to use kicking probability models in the future to determine which player should kick given the position of the penalty on the pitch.

Developing an ML solution

To calculate the penalty success probability, the Amazon Machine Learning Solutions Lab used Amazon SageMaker to train, test, and deploy an ML model from historical in-game events data, which calculates the kick predictions from anywhere in the field. The following sections explain the dataset and preprocessing steps, the model training, and model deployment procedures.

Dataset and preprocessing

Stats Perform provided the dataset for training the goal kick model. It contained millions of events from historical rugby matches from 46 leagues from 2007–2019. The raw JSON events data that was collected during live rugby matches was ingested and stored on Amazon Simple Storage Service (Amazon S3). It was then parsed and preprocessed in an Amazon SageMaker notebook instance. After selecting the kick-related events, the training data comprised approximately 67,000 kicks, with approximately 50,000 (75%) successful kicks and 17,000 misses (25%).

The following graph shows a summary of kicks taken during a sample game. The athletes kicked from different angles and various distances.

Rugby experts contributed valuable insights to the data preprocessing, which included detecting and removing anomalies, such as unreasonable kicks. The clean CSV data went back to an S3 bucket for ML training.

The following graph depicts the heatmap of the kicks after preprocessing. The left-side kicks are mirrored. The brighter colors indicated a higher chance of scoring, standardized between 0 to 1.

Feature engineering

To better capture the real-world event, the ML Solutions Lab engineered several features using exploratory data analysis and insights from rugby experts. The features that went into the modeling fell into three main categories:

  • Location-based features – The zone in which the athlete takes the kick and the distance and angle of the kick to the goal. The x-coordinates of the kicks are mirrored along the center of the rugby pitch to eliminate the left or right bias in the model.
  • Player performance features – The mean success rates of the kicker in a given field zone, in the Championship, and in the kicker’s entire career.
  • In-game situational features – The kicker’s team (home or away), the scoring situation before they take the kick, and the period of the game in which they take the kick.

The location-based and player performance features are the most important features in the model.

After feature engineering, the categorical variables were one-hot encoded, and to avoid the bias of the model towards large-value variables, the numerical predictors were standardized. During the model training phase, a player’s historical performance features were pushed to Amazon DynamoDB tables. DynamoDB helped provide single-digit millisecond latency for kick predictions during inference.

Training and deploying models

To explore a wide range of classification algorithms (such as logistic regression, random forests, XGBoost, and neural networks), a 10-fold stratified cross-validation approach was used for model training. After exploring different algorithms, the built-in XGBoost in Amazon SageMaker was used due to its better prediction performance and inference speed. Additionally, its implementation has a smaller memory footprint, better logging, and improved hyperparameter optimization (HPO) compared to the original code base.

HPO, or tuning, is the process of choosing a set of optimal hyperparameters for a learning algorithm, and is a challenging element in any ML problem. HPO in Amazon SageMaker uses an implementation of Bayesian optimization to choose the best hyperparameters for the next training job. Amazon SageMaker HPO automatically launches multiple training jobs with different hyperparameter settings, evaluates the results of those training jobs based on a predefined objective metric, and selects improved hyperparameter settings for future attempts based on previous results.

The following diagram illustrates the model training workflow.

Optimizing hyperparameters in Amazon SageMaker

You can configure training jobs and when the hyperparameter tuning job launches by initializing an estimator, which includes the container image for the algorithm (for this use case, XGBoost), configuration for the output of the training jobs, the values of static algorithm hyperparameters, and the type and number of instances to use for the training jobs. For more information, see Train a Model.

To create the XGBoost estimator for this use case, enter the following code:

import boto3
import sagemaker
from sagemaker.tuner import IntegerParameter, CategoricalParameter, ContinuousParameter, HyperparameterTuner
from sagemaker.amazon.amazon_estimator import get_image_uri
BUCKET = <bucket name>
PREFIX = 'kicker/xgboost/'
region = boto3.Session().region_name
role = sagemaker.get_execution_role()
smclient = boto3.Session().client('sagemaker')
sess = sagemaker.Session()
s3_output_path = ‘s3://{}/{}/output’.format(BUCKET, PREFIX) container = get_image_uri(region, 'xgboost', repo_version='0.90-1') xgb = sagemaker.estimator.Estimator(container, role, train_instance_count=4, train_instance_type= 'ml.m4.xlarge', output_path=s3_output_path, sagemaker_session=sess)

After you create the XGBoost estimator object, set its initial hyperparameter values as shown in the following code:

xgb.set_hyperparameters(eval_metric='auc', objective= 'binary:logistic', num_round=200, rate_drop=0.3, max_depth=5, subsample=0.8, gamma=2, eta=0.2, scale_pos_weight=2.85) #For class imbalance weights # Specifying the objective metric (auc on validation set)
OBJECTIVE_METRIC_NAME = ‘validation:auc’ # specifying the hyper parameters and their ranges
HYPERPARAMETER_RANGES = {'eta': ContinuousParameter(0, 1), 'alpha': ContinuousParameter(0, 2), 'max_depth': IntegerParameter(1, 10)}

For this post, AUC (area under the ROC curve) is the evaluation metric. This enables the tuning job to measure the performance of the different training jobs. The kick prediction is also a binary classification problem, which is specified in the objective argument as a binary:logistic. There is also a set of XGBoost-specific hyperparameters that you can tune. For more information, see Tune an XGBoost model.

Next, create a HyperparameterTuner object by indicating the XGBoost estimator, the hyperparameter ranges, passing the parameters, the objective metric name and definition, and tuning resource configurations, such as the number of training jobs to run in total and how many training jobs can run in parallel. Amazon SageMaker extracts the metric from Amazon CloudWatch Logs with a regular expression. See the following code:

tuner = HyperparameterTuner(xgb, OBJECTIVE_METRIC_NAME, HYPERPARAMETER_RANGES, max_jobs=20, max_parallel_jobs=4)
s3_input_train = sagemaker.s3_input(s3_data='s3://{}/{}/train'.format(BUCKET, PREFIX), content_type='csv')
s3_input_validation = sagemaker.s3_input(s3_data='s3://{}/{}/validation/'.format(BUCKET, PREFIX), content_type='csv')
tuner.fit({'train': s3_input_train, 'validation':

Finally, launch a hyperparameter tuning job by calling the fit() function. This function takes the paths of the training and validation datasets in the S3 bucket. After you create the hyperparameter tuning job, you can track its progress via the Amazon SageMaker console. The training time depends on the instance type and number of instances you selected during tuning setup.

Deploying the model on Amazon SageMaker

When the training jobs are complete, you can deploy the best performing model. If you’d like to compare models for A/B testing, Amazon SageMaker supports hosting representational state transfer (REST) endpoints for multiple models. To set this up, create an endpoint configuration that describes the distribution of traffic across the models. In addition, the endpoint configuration describes the instance type required for model deployment. The first step is to get the name of the best performing training job and create the model name.

After you create the endpoint configuration, you’re ready to deploy the actual endpoint for serving inference requests. The result is an endpoint that can you can validate and incorporate into production applications. For more information about deploying models, see Deploy the Model to Amazon SageMaker Hosting Services. To create the endpoint configuration and deploy it, enter the following code:

endpoint_name = 'Kicker-XGBoostEndpoint'
xgb_predictor = tuner.deploy(initial_instance_count=1, instance_type='ml.t2.medium', endpoint_name=endpoint_name)

After you create the endpoint, you can request a prediction in real time.

Building a RESTful API for real-time model inference

You can create a secure and scalable RESTful API that enables you to request the model prediction based on the input values. It’s easy and convenient to develop different APIs using AWS services.

The following diagram illustrates the model inference workflow.

First, you request the probability of the kick conversion by passing parameters through Amazon API Gateway, such as the location and zone of the kick, kicker ID, league and Championship ID, the game’s period, if the kicker’s team is playing home or away, and the team score status.

The API Gateway passes the values to the AWS Lambda function, which parses the values and requests additional features related to the player’s performance from DynamoDB lookup tables. These include the mean success rates of the kicking player in a given field zone, in the Championship, and in the kicker’s entire career. If the player doesn’t exist in the database, the model uses the average performance in the database in the given kicking location. After the function combines all the values, it standardizes the data and sends it to the Amazon SageMaker model endpoint for prediction.

The model performs the prediction and returns the predicted probability to the Lambda function. The function parses the returned value and sends it back to API Gateway. API Gateway responds with the output prediction. The end-to-end process latency is less than a second.

The following screenshot shows example input and output of the API. The RESTful API also outputs the average success rate of all the players in the given location and zone to get the comparison of the player’s performance with the overall average.

For instructions on creating a RESTful API, see Call an Amazon SageMaker model endpoint using Amazon API Gateway and AWS Lambda.

Bringing design principles into sports analytics

To create the first real-time prediction model for the tournament with a millisecond latency requirement, the ML Solutions Lab team worked backwards to identify areas in which design thinking could save time and resources. The team worked on an end-to-end notebook within an Amazon SageMaker environment, which enabled data access, raw data parsing, data preprocessing and visualization, feature engineering, model training and evaluation, and model deployment in one place. This helped in automating the modeling process.

Moreover, the ML Solutions Lab team implemented a model update iteration for when the model was updated with newly generated data, in which the model parses and processes only the additional data. This brings computational and time efficiencies to the modeling.

In terms of next steps, the Stats Perform AI team has been looking at the next stage of rugby analysis by breaking down the other strategic facets as line-outs, scrums and teams, and continuous phases of play using the fine-grain spatio-temporal data captured. The state-of-the-art feature representations and latent factor modelling (which have been utilized so effectively in Stats Perform’s “Edge” match-analysis and recruitment products in soccer) means that there is plenty of fertile space for innovation that can be explored in rugby.

Conclusion

Six Nations Rugby, Stats Perform, and AWS came together to bring the first real-time prediction model to the 2020 Guinness Six Nations Rugby Championship. The model determined a penalty or conversion kick success probability from anywhere in the field. They used Amazon SageMaker to build, train, and deploy the ML model with variables grouped into three main categories: location-based features, player performance features, and in-game situational features. The Amazon SageMaker endpoint provided prediction results with subsecond latency. The model was used by broadcasters during the live games in the Six Nations 2020 Championship, bringing a new metric to millions of rugby fans.

You can find full, end-to-end examples of creating custom training jobs, training state-of-the-art object detection models, and model deployment on Amazon SageMaker on the AWS Labs GitHub repo. To learn more about the ML Solutions Lab, see Amazon Machine Learning Solutions Lab.


About the Authors

Mehdi Noori is a Data Scientist at the Amazon ML Solutions Lab, where he works with customers across various verticals, and helps them to accelerate their cloud migration journey, and to solve their ML problems using state-of-the-art solutions and technologies.

Tesfagabir Meharizghi is a Data Scientist at the Amazon ML Solutions Lab where he works with customers across different verticals accelerate their use of artificial intelligence and AWS cloud services to solve their business challenges. Outside of work, he enjoys spending time with his family and reading books.

Patrick Lucey is the Chief Scientist at Stats Perform. Patrick started the Artificial Intelligence group at Stats Perform in 2015, with thegroup focusing on both computer vision and predictive modelling capabilities in sport. Previously, he was at Disney Research for 5 years, where he conducted research into automatic sports broadcasting using large amounts of spatiotemporal tracking data. He received his BEng(EE) from USQ and PhD from QUT, Australia in 2003 and 2008 respectively. He was also co-author of the best paper at the 2016 MIT Sloan Sports Analytics Conference and in 2017 & 2018 was co-author of best-paper runner-up at the same conference.

Xavier Ragot is Data Scientist with the Amazon ML Solution Lab team where he helps design creative ML solution to address customers’ business problems in various industries.

Source: https://aws.amazon.com/blogs/machine-learning/bringing-real-time-machine-learning-powered-insights-to-rugby-using-amazon-sagemaker/

Continue Reading

AI

Bringing real-time machine learning-powered insights to rugby using Amazon SageMaker

The Guinness Six Nations Championship began in 1883 as the Home Nations Championship among England, Ireland, Scotland, and Wales, with the inclusion of France in 1910 and Italy in 2000. It is among the oldest surviving rugby traditions and one of the best-attended sporting events in the world. The COVID-19 outbreak disrupted the end of […]

Published

on

The Guinness Six Nations Championship began in 1883 as the Home Nations Championship among England, Ireland, Scotland, and Wales, with the inclusion of France in 1910 and Italy in 2000. It is among the oldest surviving rugby traditions and one of the best-attended sporting events in the world. The COVID-19 outbreak disrupted the end of the 2020 Championship and four games were postponed. The remaining rounds resumed on October 24. With the increasing application of artificial intelligence and machine learning (ML) in sports analytics, AWS and Stats Perform partnered to bring ML-powered, real-time stats to the game of rugby, to enhance fan engagement and provide valuable insights into the game.

This post summarizes the collaborative effort between the Guinness Six Nations Rugby Championship, Stats Perform, and AWS to develop an ML-driven approach with Amazon SageMaker and other AWS services that predicts the probability of a successful penalty kick, computed in real time and broadcast live during the game. AWS infrastructure enables single-digit millisecond latency for kick predictions during inference. The Kick Predictor stat is one of the many new AWS-powered, on-screen dynamic Matchstats that provide fans with a greater understanding of key in-game events, including scrum analysis, play patterns, rucks and tackles, and power game analysis. For more information about other stats developed for rugby using AWS services, see the Six Nations Rugby website.

Rugby is a form of football with a 23-player match day squad. 15 players on each team are on the field, with additional substitutions waiting to get involved in the full-contact sport. The objective of the game is to outscore the opposing team, and one way of scoring is to kick a goal. The ability to kick accurately is one of the most critical elements of rugby, and there are two ways to score with a kick: through a conversion (worth two points) and a penalty (worth three points).

Predicting the likelihood of a successful kick is important because it enhances fan engagement during the game by showing the success probability before the player kicks the ball. There are usually 40–60 seconds of stoppage time while the player sets up for the kick, during which the Kick Predictor stat can appear on-screen to fans. Commentators also have time to predict the outcome, quantify the difficulty of each kick, and compare kickers in similar situations. Moreover, teams may start to use kicking probability models in the future to determine which player should kick given the position of the penalty on the pitch.

Developing an ML solution

To calculate the penalty success probability, the Amazon Machine Learning Solutions Lab used Amazon SageMaker to train, test, and deploy an ML model from historical in-game events data, which calculates the kick predictions from anywhere in the field. The following sections explain the dataset and preprocessing steps, the model training, and model deployment procedures.

Dataset and preprocessing

Stats Perform provided the dataset for training the goal kick model. It contained millions of events from historical rugby matches from 46 leagues from 2007–2019. The raw JSON events data that was collected during live rugby matches was ingested and stored on Amazon Simple Storage Service (Amazon S3). It was then parsed and preprocessed in an Amazon SageMaker notebook instance. After selecting the kick-related events, the training data comprised approximately 67,000 kicks, with approximately 50,000 (75%) successful kicks and 17,000 misses (25%).

The following graph shows a summary of kicks taken during a sample game. The athletes kicked from different angles and various distances.

Rugby experts contributed valuable insights to the data preprocessing, which included detecting and removing anomalies, such as unreasonable kicks. The clean CSV data went back to an S3 bucket for ML training.

The following graph depicts the heatmap of the kicks after preprocessing. The left-side kicks are mirrored. The brighter colors indicated a higher chance of scoring, standardized between 0 to 1.

Feature engineering

To better capture the real-world event, the ML Solutions Lab engineered several features using exploratory data analysis and insights from rugby experts. The features that went into the modeling fell into three main categories:

  • Location-based features – The zone in which the athlete takes the kick and the distance and angle of the kick to the goal. The x-coordinates of the kicks are mirrored along the center of the rugby pitch to eliminate the left or right bias in the model.
  • Player performance features – The mean success rates of the kicker in a given field zone, in the Championship, and in the kicker’s entire career.
  • In-game situational features – The kicker’s team (home or away), the scoring situation before they take the kick, and the period of the game in which they take the kick.

The location-based and player performance features are the most important features in the model.

After feature engineering, the categorical variables were one-hot encoded, and to avoid the bias of the model towards large-value variables, the numerical predictors were standardized. During the model training phase, a player’s historical performance features were pushed to Amazon DynamoDB tables. DynamoDB helped provide single-digit millisecond latency for kick predictions during inference.

Training and deploying models

To explore a wide range of classification algorithms (such as logistic regression, random forests, XGBoost, and neural networks), a 10-fold stratified cross-validation approach was used for model training. After exploring different algorithms, the built-in XGBoost in Amazon SageMaker was used due to its better prediction performance and inference speed. Additionally, its implementation has a smaller memory footprint, better logging, and improved hyperparameter optimization (HPO) compared to the original code base.

HPO, or tuning, is the process of choosing a set of optimal hyperparameters for a learning algorithm, and is a challenging element in any ML problem. HPO in Amazon SageMaker uses an implementation of Bayesian optimization to choose the best hyperparameters for the next training job. Amazon SageMaker HPO automatically launches multiple training jobs with different hyperparameter settings, evaluates the results of those training jobs based on a predefined objective metric, and selects improved hyperparameter settings for future attempts based on previous results.

The following diagram illustrates the model training workflow.

Optimizing hyperparameters in Amazon SageMaker

You can configure training jobs and when the hyperparameter tuning job launches by initializing an estimator, which includes the container image for the algorithm (for this use case, XGBoost), configuration for the output of the training jobs, the values of static algorithm hyperparameters, and the type and number of instances to use for the training jobs. For more information, see Train a Model.

To create the XGBoost estimator for this use case, enter the following code:

import boto3
import sagemaker
from sagemaker.tuner import IntegerParameter, CategoricalParameter, ContinuousParameter, HyperparameterTuner
from sagemaker.amazon.amazon_estimator import get_image_uri
BUCKET = <bucket name>
PREFIX = 'kicker/xgboost/'
region = boto3.Session().region_name
role = sagemaker.get_execution_role()
smclient = boto3.Session().client('sagemaker')
sess = sagemaker.Session()
s3_output_path = ‘s3://{}/{}/output’.format(BUCKET, PREFIX) container = get_image_uri(region, 'xgboost', repo_version='0.90-1') xgb = sagemaker.estimator.Estimator(container, role, train_instance_count=4, train_instance_type= 'ml.m4.xlarge', output_path=s3_output_path, sagemaker_session=sess)

After you create the XGBoost estimator object, set its initial hyperparameter values as shown in the following code:

xgb.set_hyperparameters(eval_metric='auc', objective= 'binary:logistic', num_round=200, rate_drop=0.3, max_depth=5, subsample=0.8, gamma=2, eta=0.2, scale_pos_weight=2.85) #For class imbalance weights # Specifying the objective metric (auc on validation set)
OBJECTIVE_METRIC_NAME = ‘validation:auc’ # specifying the hyper parameters and their ranges
HYPERPARAMETER_RANGES = {'eta': ContinuousParameter(0, 1), 'alpha': ContinuousParameter(0, 2), 'max_depth': IntegerParameter(1, 10)}

For this post, AUC (area under the ROC curve) is the evaluation metric. This enables the tuning job to measure the performance of the different training jobs. The kick prediction is also a binary classification problem, which is specified in the objective argument as a binary:logistic. There is also a set of XGBoost-specific hyperparameters that you can tune. For more information, see Tune an XGBoost model.

Next, create a HyperparameterTuner object by indicating the XGBoost estimator, the hyperparameter ranges, passing the parameters, the objective metric name and definition, and tuning resource configurations, such as the number of training jobs to run in total and how many training jobs can run in parallel. Amazon SageMaker extracts the metric from Amazon CloudWatch Logs with a regular expression. See the following code:

tuner = HyperparameterTuner(xgb, OBJECTIVE_METRIC_NAME, HYPERPARAMETER_RANGES, max_jobs=20, max_parallel_jobs=4)
s3_input_train = sagemaker.s3_input(s3_data='s3://{}/{}/train'.format(BUCKET, PREFIX), content_type='csv')
s3_input_validation = sagemaker.s3_input(s3_data='s3://{}/{}/validation/'.format(BUCKET, PREFIX), content_type='csv')
tuner.fit({'train': s3_input_train, 'validation':

Finally, launch a hyperparameter tuning job by calling the fit() function. This function takes the paths of the training and validation datasets in the S3 bucket. After you create the hyperparameter tuning job, you can track its progress via the Amazon SageMaker console. The training time depends on the instance type and number of instances you selected during tuning setup.

Deploying the model on Amazon SageMaker

When the training jobs are complete, you can deploy the best performing model. If you’d like to compare models for A/B testing, Amazon SageMaker supports hosting representational state transfer (REST) endpoints for multiple models. To set this up, create an endpoint configuration that describes the distribution of traffic across the models. In addition, the endpoint configuration describes the instance type required for model deployment. The first step is to get the name of the best performing training job and create the model name.

After you create the endpoint configuration, you’re ready to deploy the actual endpoint for serving inference requests. The result is an endpoint that can you can validate and incorporate into production applications. For more information about deploying models, see Deploy the Model to Amazon SageMaker Hosting Services. To create the endpoint configuration and deploy it, enter the following code:

endpoint_name = 'Kicker-XGBoostEndpoint'
xgb_predictor = tuner.deploy(initial_instance_count=1, instance_type='ml.t2.medium', endpoint_name=endpoint_name)

After you create the endpoint, you can request a prediction in real time.

Building a RESTful API for real-time model inference

You can create a secure and scalable RESTful API that enables you to request the model prediction based on the input values. It’s easy and convenient to develop different APIs using AWS services.

The following diagram illustrates the model inference workflow.

First, you request the probability of the kick conversion by passing parameters through Amazon API Gateway, such as the location and zone of the kick, kicker ID, league and Championship ID, the game’s period, if the kicker’s team is playing home or away, and the team score status.

The API Gateway passes the values to the AWS Lambda function, which parses the values and requests additional features related to the player’s performance from DynamoDB lookup tables. These include the mean success rates of the kicking player in a given field zone, in the Championship, and in the kicker’s entire career. If the player doesn’t exist in the database, the model uses the average performance in the database in the given kicking location. After the function combines all the values, it standardizes the data and sends it to the Amazon SageMaker model endpoint for prediction.

The model performs the prediction and returns the predicted probability to the Lambda function. The function parses the returned value and sends it back to API Gateway. API Gateway responds with the output prediction. The end-to-end process latency is less than a second.

The following screenshot shows example input and output of the API. The RESTful API also outputs the average success rate of all the players in the given location and zone to get the comparison of the player’s performance with the overall average.

For instructions on creating a RESTful API, see Call an Amazon SageMaker model endpoint using Amazon API Gateway and AWS Lambda.

Bringing design principles into sports analytics

To create the first real-time prediction model for the tournament with a millisecond latency requirement, the ML Solutions Lab team worked backwards to identify areas in which design thinking could save time and resources. The team worked on an end-to-end notebook within an Amazon SageMaker environment, which enabled data access, raw data parsing, data preprocessing and visualization, feature engineering, model training and evaluation, and model deployment in one place. This helped in automating the modeling process.

Moreover, the ML Solutions Lab team implemented a model update iteration for when the model was updated with newly generated data, in which the model parses and processes only the additional data. This brings computational and time efficiencies to the modeling.

In terms of next steps, the Stats Perform AI team has been looking at the next stage of rugby analysis by breaking down the other strategic facets as line-outs, scrums and teams, and continuous phases of play using the fine-grain spatio-temporal data captured. The state-of-the-art feature representations and latent factor modelling (which have been utilized so effectively in Stats Perform’s “Edge” match-analysis and recruitment products in soccer) means that there is plenty of fertile space for innovation that can be explored in rugby.

Conclusion

Six Nations Rugby, Stats Perform, and AWS came together to bring the first real-time prediction model to the 2020 Guinness Six Nations Rugby Championship. The model determined a penalty or conversion kick success probability from anywhere in the field. They used Amazon SageMaker to build, train, and deploy the ML model with variables grouped into three main categories: location-based features, player performance features, and in-game situational features. The Amazon SageMaker endpoint provided prediction results with subsecond latency. The model was used by broadcasters during the live games in the Six Nations 2020 Championship, bringing a new metric to millions of rugby fans.

You can find full, end-to-end examples of creating custom training jobs, training state-of-the-art object detection models, and model deployment on Amazon SageMaker on the AWS Labs GitHub repo. To learn more about the ML Solutions Lab, see Amazon Machine Learning Solutions Lab.


About the Authors

Mehdi Noori is a Data Scientist at the Amazon ML Solutions Lab, where he works with customers across various verticals, and helps them to accelerate their cloud migration journey, and to solve their ML problems using state-of-the-art solutions and technologies.

Tesfagabir Meharizghi is a Data Scientist at the Amazon ML Solutions Lab where he works with customers across different verticals accelerate their use of artificial intelligence and AWS cloud services to solve their business challenges. Outside of work, he enjoys spending time with his family and reading books.

Patrick Lucey is the Chief Scientist at Stats Perform. Patrick started the Artificial Intelligence group at Stats Perform in 2015, with thegroup focusing on both computer vision and predictive modelling capabilities in sport. Previously, he was at Disney Research for 5 years, where he conducted research into automatic sports broadcasting using large amounts of spatiotemporal tracking data. He received his BEng(EE) from USQ and PhD from QUT, Australia in 2003 and 2008 respectively. He was also co-author of the best paper at the 2016 MIT Sloan Sports Analytics Conference and in 2017 & 2018 was co-author of best-paper runner-up at the same conference.

Xavier Ragot is Data Scientist with the Amazon ML Solution Lab team where he helps design creative ML solution to address customers’ business problems in various industries.

Source: https://aws.amazon.com/blogs/machine-learning/bringing-real-time-machine-learning-powered-insights-to-rugby-using-amazon-sagemaker/

Continue Reading

AI

Bringing real-time machine learning-powered insights to rugby using Amazon SageMaker

The Guinness Six Nations Championship began in 1883 as the Home Nations Championship among England, Ireland, Scotland, and Wales, with the inclusion of France in 1910 and Italy in 2000. It is among the oldest surviving rugby traditions and one of the best-attended sporting events in the world. The COVID-19 outbreak disrupted the end of […]

Published

on

The Guinness Six Nations Championship began in 1883 as the Home Nations Championship among England, Ireland, Scotland, and Wales, with the inclusion of France in 1910 and Italy in 2000. It is among the oldest surviving rugby traditions and one of the best-attended sporting events in the world. The COVID-19 outbreak disrupted the end of the 2020 Championship and four games were postponed. The remaining rounds resumed on October 24. With the increasing application of artificial intelligence and machine learning (ML) in sports analytics, AWS and Stats Perform partnered to bring ML-powered, real-time stats to the game of rugby, to enhance fan engagement and provide valuable insights into the game.

This post summarizes the collaborative effort between the Guinness Six Nations Rugby Championship, Stats Perform, and AWS to develop an ML-driven approach with Amazon SageMaker and other AWS services that predicts the probability of a successful penalty kick, computed in real time and broadcast live during the game. AWS infrastructure enables single-digit millisecond latency for kick predictions during inference. The Kick Predictor stat is one of the many new AWS-powered, on-screen dynamic Matchstats that provide fans with a greater understanding of key in-game events, including scrum analysis, play patterns, rucks and tackles, and power game analysis. For more information about other stats developed for rugby using AWS services, see the Six Nations Rugby website.

Rugby is a form of football with a 23-player match day squad. 15 players on each team are on the field, with additional substitutions waiting to get involved in the full-contact sport. The objective of the game is to outscore the opposing team, and one way of scoring is to kick a goal. The ability to kick accurately is one of the most critical elements of rugby, and there are two ways to score with a kick: through a conversion (worth two points) and a penalty (worth three points).

Predicting the likelihood of a successful kick is important because it enhances fan engagement during the game by showing the success probability before the player kicks the ball. There are usually 40–60 seconds of stoppage time while the player sets up for the kick, during which the Kick Predictor stat can appear on-screen to fans. Commentators also have time to predict the outcome, quantify the difficulty of each kick, and compare kickers in similar situations. Moreover, teams may start to use kicking probability models in the future to determine which player should kick given the position of the penalty on the pitch.

Developing an ML solution

To calculate the penalty success probability, the Amazon Machine Learning Solutions Lab used Amazon SageMaker to train, test, and deploy an ML model from historical in-game events data, which calculates the kick predictions from anywhere in the field. The following sections explain the dataset and preprocessing steps, the model training, and model deployment procedures.

Dataset and preprocessing

Stats Perform provided the dataset for training the goal kick model. It contained millions of events from historical rugby matches from 46 leagues from 2007–2019. The raw JSON events data that was collected during live rugby matches was ingested and stored on Amazon Simple Storage Service (Amazon S3). It was then parsed and preprocessed in an Amazon SageMaker notebook instance. After selecting the kick-related events, the training data comprised approximately 67,000 kicks, with approximately 50,000 (75%) successful kicks and 17,000 misses (25%).

The following graph shows a summary of kicks taken during a sample game. The athletes kicked from different angles and various distances.

Rugby experts contributed valuable insights to the data preprocessing, which included detecting and removing anomalies, such as unreasonable kicks. The clean CSV data went back to an S3 bucket for ML training.

The following graph depicts the heatmap of the kicks after preprocessing. The left-side kicks are mirrored. The brighter colors indicated a higher chance of scoring, standardized between 0 to 1.

Feature engineering

To better capture the real-world event, the ML Solutions Lab engineered several features using exploratory data analysis and insights from rugby experts. The features that went into the modeling fell into three main categories:

  • Location-based features – The zone in which the athlete takes the kick and the distance and angle of the kick to the goal. The x-coordinates of the kicks are mirrored along the center of the rugby pitch to eliminate the left or right bias in the model.
  • Player performance features – The mean success rates of the kicker in a given field zone, in the Championship, and in the kicker’s entire career.
  • In-game situational features – The kicker’s team (home or away), the scoring situation before they take the kick, and the period of the game in which they take the kick.

The location-based and player performance features are the most important features in the model.

After feature engineering, the categorical variables were one-hot encoded, and to avoid the bias of the model towards large-value variables, the numerical predictors were standardized. During the model training phase, a player’s historical performance features were pushed to Amazon DynamoDB tables. DynamoDB helped provide single-digit millisecond latency for kick predictions during inference.

Training and deploying models

To explore a wide range of classification algorithms (such as logistic regression, random forests, XGBoost, and neural networks), a 10-fold stratified cross-validation approach was used for model training. After exploring different algorithms, the built-in XGBoost in Amazon SageMaker was used due to its better prediction performance and inference speed. Additionally, its implementation has a smaller memory footprint, better logging, and improved hyperparameter optimization (HPO) compared to the original code base.

HPO, or tuning, is the process of choosing a set of optimal hyperparameters for a learning algorithm, and is a challenging element in any ML problem. HPO in Amazon SageMaker uses an implementation of Bayesian optimization to choose the best hyperparameters for the next training job. Amazon SageMaker HPO automatically launches multiple training jobs with different hyperparameter settings, evaluates the results of those training jobs based on a predefined objective metric, and selects improved hyperparameter settings for future attempts based on previous results.

The following diagram illustrates the model training workflow.

Optimizing hyperparameters in Amazon SageMaker

You can configure training jobs and when the hyperparameter tuning job launches by initializing an estimator, which includes the container image for the algorithm (for this use case, XGBoost), configuration for the output of the training jobs, the values of static algorithm hyperparameters, and the type and number of instances to use for the training jobs. For more information, see Train a Model.

To create the XGBoost estimator for this use case, enter the following code:

import boto3
import sagemaker
from sagemaker.tuner import IntegerParameter, CategoricalParameter, ContinuousParameter, HyperparameterTuner
from sagemaker.amazon.amazon_estimator import get_image_uri
BUCKET = <bucket name>
PREFIX = 'kicker/xgboost/'
region = boto3.Session().region_name
role = sagemaker.get_execution_role()
smclient = boto3.Session().client('sagemaker')
sess = sagemaker.Session()
s3_output_path = ‘s3://{}/{}/output’.format(BUCKET, PREFIX) container = get_image_uri(region, 'xgboost', repo_version='0.90-1') xgb = sagemaker.estimator.Estimator(container, role, train_instance_count=4, train_instance_type= 'ml.m4.xlarge', output_path=s3_output_path, sagemaker_session=sess)

After you create the XGBoost estimator object, set its initial hyperparameter values as shown in the following code:

xgb.set_hyperparameters(eval_metric='auc', objective= 'binary:logistic', num_round=200, rate_drop=0.3, max_depth=5, subsample=0.8, gamma=2, eta=0.2, scale_pos_weight=2.85) #For class imbalance weights # Specifying the objective metric (auc on validation set)
OBJECTIVE_METRIC_NAME = ‘validation:auc’ # specifying the hyper parameters and their ranges
HYPERPARAMETER_RANGES = {'eta': ContinuousParameter(0, 1), 'alpha': ContinuousParameter(0, 2), 'max_depth': IntegerParameter(1, 10)}

For this post, AUC (area under the ROC curve) is the evaluation metric. This enables the tuning job to measure the performance of the different training jobs. The kick prediction is also a binary classification problem, which is specified in the objective argument as a binary:logistic. There is also a set of XGBoost-specific hyperparameters that you can tune. For more information, see Tune an XGBoost model.

Next, create a HyperparameterTuner object by indicating the XGBoost estimator, the hyperparameter ranges, passing the parameters, the objective metric name and definition, and tuning resource configurations, such as the number of training jobs to run in total and how many training jobs can run in parallel. Amazon SageMaker extracts the metric from Amazon CloudWatch Logs with a regular expression. See the following code:

tuner = HyperparameterTuner(xgb, OBJECTIVE_METRIC_NAME, HYPERPARAMETER_RANGES, max_jobs=20, max_parallel_jobs=4)
s3_input_train = sagemaker.s3_input(s3_data='s3://{}/{}/train'.format(BUCKET, PREFIX), content_type='csv')
s3_input_validation = sagemaker.s3_input(s3_data='s3://{}/{}/validation/'.format(BUCKET, PREFIX), content_type='csv')
tuner.fit({'train': s3_input_train, 'validation':

Finally, launch a hyperparameter tuning job by calling the fit() function. This function takes the paths of the training and validation datasets in the S3 bucket. After you create the hyperparameter tuning job, you can track its progress via the Amazon SageMaker console. The training time depends on the instance type and number of instances you selected during tuning setup.

Deploying the model on Amazon SageMaker

When the training jobs are complete, you can deploy the best performing model. If you’d like to compare models for A/B testing, Amazon SageMaker supports hosting representational state transfer (REST) endpoints for multiple models. To set this up, create an endpoint configuration that describes the distribution of traffic across the models. In addition, the endpoint configuration describes the instance type required for model deployment. The first step is to get the name of the best performing training job and create the model name.

After you create the endpoint configuration, you’re ready to deploy the actual endpoint for serving inference requests. The result is an endpoint that can you can validate and incorporate into production applications. For more information about deploying models, see Deploy the Model to Amazon SageMaker Hosting Services. To create the endpoint configuration and deploy it, enter the following code:

endpoint_name = 'Kicker-XGBoostEndpoint'
xgb_predictor = tuner.deploy(initial_instance_count=1, instance_type='ml.t2.medium', endpoint_name=endpoint_name)

After you create the endpoint, you can request a prediction in real time.

Building a RESTful API for real-time model inference

You can create a secure and scalable RESTful API that enables you to request the model prediction based on the input values. It’s easy and convenient to develop different APIs using AWS services.

The following diagram illustrates the model inference workflow.

First, you request the probability of the kick conversion by passing parameters through Amazon API Gateway, such as the location and zone of the kick, kicker ID, league and Championship ID, the game’s period, if the kicker’s team is playing home or away, and the team score status.

The API Gateway passes the values to the AWS Lambda function, which parses the values and requests additional features related to the player’s performance from DynamoDB lookup tables. These include the mean success rates of the kicking player in a given field zone, in the Championship, and in the kicker’s entire career. If the player doesn’t exist in the database, the model uses the average performance in the database in the given kicking location. After the function combines all the values, it standardizes the data and sends it to the Amazon SageMaker model endpoint for prediction.

The model performs the prediction and returns the predicted probability to the Lambda function. The function parses the returned value and sends it back to API Gateway. API Gateway responds with the output prediction. The end-to-end process latency is less than a second.

The following screenshot shows example input and output of the API. The RESTful API also outputs the average success rate of all the players in the given location and zone to get the comparison of the player’s performance with the overall average.

For instructions on creating a RESTful API, see Call an Amazon SageMaker model endpoint using Amazon API Gateway and AWS Lambda.

Bringing design principles into sports analytics

To create the first real-time prediction model for the tournament with a millisecond latency requirement, the ML Solutions Lab team worked backwards to identify areas in which design thinking could save time and resources. The team worked on an end-to-end notebook within an Amazon SageMaker environment, which enabled data access, raw data parsing, data preprocessing and visualization, feature engineering, model training and evaluation, and model deployment in one place. This helped in automating the modeling process.

Moreover, the ML Solutions Lab team implemented a model update iteration for when the model was updated with newly generated data, in which the model parses and processes only the additional data. This brings computational and time efficiencies to the modeling.

In terms of next steps, the Stats Perform AI team has been looking at the next stage of rugby analysis by breaking down the other strategic facets as line-outs, scrums and teams, and continuous phases of play using the fine-grain spatio-temporal data captured. The state-of-the-art feature representations and latent factor modelling (which have been utilized so effectively in Stats Perform’s “Edge” match-analysis and recruitment products in soccer) means that there is plenty of fertile space for innovation that can be explored in rugby.

Conclusion

Six Nations Rugby, Stats Perform, and AWS came together to bring the first real-time prediction model to the 2020 Guinness Six Nations Rugby Championship. The model determined a penalty or conversion kick success probability from anywhere in the field. They used Amazon SageMaker to build, train, and deploy the ML model with variables grouped into three main categories: location-based features, player performance features, and in-game situational features. The Amazon SageMaker endpoint provided prediction results with subsecond latency. The model was used by broadcasters during the live games in the Six Nations 2020 Championship, bringing a new metric to millions of rugby fans.

You can find full, end-to-end examples of creating custom training jobs, training state-of-the-art object detection models, and model deployment on Amazon SageMaker on the AWS Labs GitHub repo. To learn more about the ML Solutions Lab, see Amazon Machine Learning Solutions Lab.


About the Authors

Mehdi Noori is a Data Scientist at the Amazon ML Solutions Lab, where he works with customers across various verticals, and helps them to accelerate their cloud migration journey, and to solve their ML problems using state-of-the-art solutions and technologies.

Tesfagabir Meharizghi is a Data Scientist at the Amazon ML Solutions Lab where he works with customers across different verticals accelerate their use of artificial intelligence and AWS cloud services to solve their business challenges. Outside of work, he enjoys spending time with his family and reading books.

Patrick Lucey is the Chief Scientist at Stats Perform. Patrick started the Artificial Intelligence group at Stats Perform in 2015, with thegroup focusing on both computer vision and predictive modelling capabilities in sport. Previously, he was at Disney Research for 5 years, where he conducted research into automatic sports broadcasting using large amounts of spatiotemporal tracking data. He received his BEng(EE) from USQ and PhD from QUT, Australia in 2003 and 2008 respectively. He was also co-author of the best paper at the 2016 MIT Sloan Sports Analytics Conference and in 2017 & 2018 was co-author of best-paper runner-up at the same conference.

Xavier Ragot is Data Scientist with the Amazon ML Solution Lab team where he helps design creative ML solution to address customers’ business problems in various industries.

Source: https://aws.amazon.com/blogs/machine-learning/bringing-real-time-machine-learning-powered-insights-to-rugby-using-amazon-sagemaker/

Continue Reading
AI15 hours ago

Bringing real-time machine learning-powered insights to rugby using Amazon SageMaker

AI15 hours ago

Bringing real-time machine learning-powered insights to rugby using Amazon SageMaker

AI15 hours ago

Bringing real-time machine learning-powered insights to rugby using Amazon SageMaker

AI15 hours ago

Bringing real-time machine learning-powered insights to rugby using Amazon SageMaker

AI15 hours ago

Bringing real-time machine learning-powered insights to rugby using Amazon SageMaker

AI15 hours ago

Bringing real-time machine learning-powered insights to rugby using Amazon SageMaker

AI15 hours ago

Bringing real-time machine learning-powered insights to rugby using Amazon SageMaker

AI15 hours ago

Bringing real-time machine learning-powered insights to rugby using Amazon SageMaker

AI15 hours ago

Bringing real-time machine learning-powered insights to rugby using Amazon SageMaker

AI15 hours ago

Bringing real-time machine learning-powered insights to rugby using Amazon SageMaker

AI15 hours ago

Bringing real-time machine learning-powered insights to rugby using Amazon SageMaker

AI15 hours ago

Bringing real-time machine learning-powered insights to rugby using Amazon SageMaker

AI15 hours ago

Bringing real-time machine learning-powered insights to rugby using Amazon SageMaker

AI15 hours ago

Bringing real-time machine learning-powered insights to rugby using Amazon SageMaker

AI15 hours ago

Bringing real-time machine learning-powered insights to rugby using Amazon SageMaker

AI15 hours ago

Bringing real-time machine learning-powered insights to rugby using Amazon SageMaker

AI15 hours ago

Bringing real-time machine learning-powered insights to rugby using Amazon SageMaker

AI15 hours ago

Bringing real-time machine learning-powered insights to rugby using Amazon SageMaker

AI15 hours ago

Bringing real-time machine learning-powered insights to rugby using Amazon SageMaker

AI16 hours ago

Building an NLU-powered search application with Amazon SageMaker and the Amazon ES KNN feature

Trending