Connect with us

AI

Chatbot Best Practices: 8 Tips & Tricks you Can Benefit from Today

Chatbot best practice #1: set a goal for your chatbot As obvious as it may seem, this is the number one chatbot best practice to keep in mind when starting to design a conversational agent. You can create a bot for almost anything nowadays, so setting a clear goal for yours and outlining what it’s […]

The post Chatbot Best Practices: 8 Tips & Tricks you Can Benefit from Today appeared first on Inbenta.

Published

on

Designing an AI chatbot is a tricky exercise that cannot be improvised. Following a set of best practices will help you avoid common mistakes and pitfalls that other companies have encountered. This will ensure that you create a bot that is helpful, engaging, and meets customers’ expectations every time. We have compiled the top 8 chatbot best practices when it comes to designing state-of-the-art conversational experiences. Use these to make your chatbot a success.

Chatbot best practice #1: set a goal for your chatbot

As obvious as it may seem, this is the number one chatbot best practice to keep in mind when starting to design a conversational agent. You can create a bot for almost anything nowadays, so setting a clear goal for yours and outlining what it’s supposed to do, right from the beginning, will prevent you from getting carried away.

Defining what can be automated is a good place to start, but remember to always keep your user’s needs in mind when doing so. It can be as simple as answering user’s queries, or more complex, like allowing employees to request annual leave, but your chatbot has to be user-centric and help solve their problems if you want it to be successful.

Chatbot best practice #2: give your chatbot a personality

“Personality is the new user experience.”
(Source: Ultan O’Broin from Chatbots Magazine)

The second important point that you should think about when creating your conversational chatbot is to ensure that it doesn’t sound like a robot. That means giving it a personality and a tone of voice that’s aligned with your brand’s values.

This is a tricky exercise as a lack of personality will make your chatbot sound dull and uninteresting, on the other hand, too much personality can also ruin an otherwise well-designed experience.

Ask yourself these questions to help you find the right balance:

  • How would your target audience speak?
    A chatbot often mirrors the personality of its audience by writing in the style they speak.
  • What’s the name of your chatbot? It can be straightforward such as your brand’s name followed by ‘bot’ or ‘chatbot’, or a play on words for example.
  • Does it have a gender and a visual representation? Inbenta gives you the option to choose from a vast gallery of avatars so that you can find the one that will become the perfect representation of your brand. 

Chatbot best practice #3: introduce your chatbot and set expectations

As mentioned at the beginning of this article, you have to set a goal for your chatbot. Now that you know what your bot was designed to do, you have to clearly communicate that to your users. Your welcome message is the perfect place to introduce your bot and list all of its capabilities.

By being upfront about functionalities, as well as limitations, you will manage the user’s expectations and prevent frustrations and disappointment.

Chatbot best practice #4: break up the information into small chunks

A well-designed bot can present users with lots of informative and interesting content. That’s great, but don’t forget to break up the information when pushing useful and engaging material. That means sending multiple short messages rather than a long one. Huge blocks of text are difficult to read and may frustrate, discourage, and/or overwhelm users. By shortening messages, your bot will provide a better user experience and also mimic the flow of human messaging.

When developing your chatbot with Inbenta, you also have the option to use a side-bubble where you can develop more in-depth content, which is another great way of breaking up the information.

Inbenta chatbot best practice: use a side-bubble

Chatbot best practice #5: test, monitor, tune

Going through an alpha and beta testing phase before releasing your chatbot is quite obvious, but you have to keep on monitoring results even after going live. It is surprising to see how many companies forget about this simple chatbot best practice and forget about their bot once it’s been developed.

Inbenta’s Workspace will provide you with lots of data and analytics to help you analyze your bot performance, perform a gap analysis by detecting questions that did not get an answer, or the ones that got an answer but were not viewed by the user.

Inbenta chatbot best practice: test, monitor, tune Monitoring your bot thanks to such a dashboard will allow you to tune it by adding content or improving matching between user’s requests and content in the knowledge base, thus improving its performance over time to reach amazing results.

Chatbot best practice #6: request user feedback

Giving the option for users to rate answers – using a thumbs up or down button for example – is an easy way to gather feedback. You can also offer them the option to provide written feedback when a negative mark is given so that they can provide more in-depth explanations of why interactions with your bot were not satisfactory.

Ratings and written feedback can be very helpful and instructive. They give you the opportunity to detect gaps in your knowledge base or ways to use your bot or formulate questions that you did not think of.

Chatbot best practice #7: detect frustration and handoff to a human

No matter how good or well-designed your chatbot is, every bot has its limitations. These limitations will sometimes create frustrations, that’s why you need a technology that can detect your users’ emotions by analyzing their tone and the type of language they use.

Inbenta’s NLP technology and intent detection can do exactly that and provide an option to escalate the conversation to a human agent when/if necessary. Using our HyperChat is the best way to complement your chatbot when it reaches its limits. Escalating the conversation can be done as a reaction to the user’s frustration or explicit request, but can also be offered proactively by the bot when it can’t answer a question after it’s been rephrased once or twice.

Chatbot best practice #8: choose your provider and technology wisely

Last but not least, the most important best practice when developing a chatbot is to choose wisely when it comes to picking the technology (and by extension the provider) that your bot will use.

As mentioned in a previous article, there are different types of chatbots. Some basic ones based on buttons or keywords and some best-performing ones, such as Inbenta’s conversational chatbots which use NLP technology coupled with symbolic AI. This is by far the best combination when it comes to obtaining the best results out of your AI-powered chatbot and that’s something that you should keep in mind when deciding on your technology provider.

With 15 years of experience and over 250 customers globally, Inbenta has built a solid reputation and can help you supercharge how you interact with your users, thanks to our patented and proprietary NLP technology. Want to know more? Get in touch today!

Let’s get in touch

AI

Bringing real-time machine learning-powered insights to rugby using Amazon SageMaker

The Guinness Six Nations Championship began in 1883 as the Home Nations Championship among England, Ireland, Scotland, and Wales, with the inclusion of France in 1910 and Italy in 2000. It is among the oldest surviving rugby traditions and one of the best-attended sporting events in the world. The COVID-19 outbreak disrupted the end of […]

Published

on

The Guinness Six Nations Championship began in 1883 as the Home Nations Championship among England, Ireland, Scotland, and Wales, with the inclusion of France in 1910 and Italy in 2000. It is among the oldest surviving rugby traditions and one of the best-attended sporting events in the world. The COVID-19 outbreak disrupted the end of the 2020 Championship and four games were postponed. The remaining rounds resumed on October 24. With the increasing application of artificial intelligence and machine learning (ML) in sports analytics, AWS and Stats Perform partnered to bring ML-powered, real-time stats to the game of rugby, to enhance fan engagement and provide valuable insights into the game.

This post summarizes the collaborative effort between the Guinness Six Nations Rugby Championship, Stats Perform, and AWS to develop an ML-driven approach with Amazon SageMaker and other AWS services that predicts the probability of a successful penalty kick, computed in real time and broadcast live during the game. AWS infrastructure enables single-digit millisecond latency for kick predictions during inference. The Kick Predictor stat is one of the many new AWS-powered, on-screen dynamic Matchstats that provide fans with a greater understanding of key in-game events, including scrum analysis, play patterns, rucks and tackles, and power game analysis. For more information about other stats developed for rugby using AWS services, see the Six Nations Rugby website.

Rugby is a form of football with a 23-player match day squad. 15 players on each team are on the field, with additional substitutions waiting to get involved in the full-contact sport. The objective of the game is to outscore the opposing team, and one way of scoring is to kick a goal. The ability to kick accurately is one of the most critical elements of rugby, and there are two ways to score with a kick: through a conversion (worth two points) and a penalty (worth three points).

Predicting the likelihood of a successful kick is important because it enhances fan engagement during the game by showing the success probability before the player kicks the ball. There are usually 40–60 seconds of stoppage time while the player sets up for the kick, during which the Kick Predictor stat can appear on-screen to fans. Commentators also have time to predict the outcome, quantify the difficulty of each kick, and compare kickers in similar situations. Moreover, teams may start to use kicking probability models in the future to determine which player should kick given the position of the penalty on the pitch.

Developing an ML solution

To calculate the penalty success probability, the Amazon Machine Learning Solutions Lab used Amazon SageMaker to train, test, and deploy an ML model from historical in-game events data, which calculates the kick predictions from anywhere in the field. The following sections explain the dataset and preprocessing steps, the model training, and model deployment procedures.

Dataset and preprocessing

Stats Perform provided the dataset for training the goal kick model. It contained millions of events from historical rugby matches from 46 leagues from 2007–2019. The raw JSON events data that was collected during live rugby matches was ingested and stored on Amazon Simple Storage Service (Amazon S3). It was then parsed and preprocessed in an Amazon SageMaker notebook instance. After selecting the kick-related events, the training data comprised approximately 67,000 kicks, with approximately 50,000 (75%) successful kicks and 17,000 misses (25%).

The following graph shows a summary of kicks taken during a sample game. The athletes kicked from different angles and various distances.

Rugby experts contributed valuable insights to the data preprocessing, which included detecting and removing anomalies, such as unreasonable kicks. The clean CSV data went back to an S3 bucket for ML training.

The following graph depicts the heatmap of the kicks after preprocessing. The left-side kicks are mirrored. The brighter colors indicated a higher chance of scoring, standardized between 0 to 1.

Feature engineering

To better capture the real-world event, the ML Solutions Lab engineered several features using exploratory data analysis and insights from rugby experts. The features that went into the modeling fell into three main categories:

  • Location-based features – The zone in which the athlete takes the kick and the distance and angle of the kick to the goal. The x-coordinates of the kicks are mirrored along the center of the rugby pitch to eliminate the left or right bias in the model.
  • Player performance features – The mean success rates of the kicker in a given field zone, in the Championship, and in the kicker’s entire career.
  • In-game situational features – The kicker’s team (home or away), the scoring situation before they take the kick, and the period of the game in which they take the kick.

The location-based and player performance features are the most important features in the model.

After feature engineering, the categorical variables were one-hot encoded, and to avoid the bias of the model towards large-value variables, the numerical predictors were standardized. During the model training phase, a player’s historical performance features were pushed to Amazon DynamoDB tables. DynamoDB helped provide single-digit millisecond latency for kick predictions during inference.

Training and deploying models

To explore a wide range of classification algorithms (such as logistic regression, random forests, XGBoost, and neural networks), a 10-fold stratified cross-validation approach was used for model training. After exploring different algorithms, the built-in XGBoost in Amazon SageMaker was used due to its better prediction performance and inference speed. Additionally, its implementation has a smaller memory footprint, better logging, and improved hyperparameter optimization (HPO) compared to the original code base.

HPO, or tuning, is the process of choosing a set of optimal hyperparameters for a learning algorithm, and is a challenging element in any ML problem. HPO in Amazon SageMaker uses an implementation of Bayesian optimization to choose the best hyperparameters for the next training job. Amazon SageMaker HPO automatically launches multiple training jobs with different hyperparameter settings, evaluates the results of those training jobs based on a predefined objective metric, and selects improved hyperparameter settings for future attempts based on previous results.

The following diagram illustrates the model training workflow.

Optimizing hyperparameters in Amazon SageMaker

You can configure training jobs and when the hyperparameter tuning job launches by initializing an estimator, which includes the container image for the algorithm (for this use case, XGBoost), configuration for the output of the training jobs, the values of static algorithm hyperparameters, and the type and number of instances to use for the training jobs. For more information, see Train a Model.

To create the XGBoost estimator for this use case, enter the following code:

import boto3
import sagemaker
from sagemaker.tuner import IntegerParameter, CategoricalParameter, ContinuousParameter, HyperparameterTuner
from sagemaker.amazon.amazon_estimator import get_image_uri
BUCKET = <bucket name>
PREFIX = 'kicker/xgboost/'
region = boto3.Session().region_name
role = sagemaker.get_execution_role()
smclient = boto3.Session().client('sagemaker')
sess = sagemaker.Session()
s3_output_path = ‘s3://{}/{}/output’.format(BUCKET, PREFIX) container = get_image_uri(region, 'xgboost', repo_version='0.90-1') xgb = sagemaker.estimator.Estimator(container, role, train_instance_count=4, train_instance_type= 'ml.m4.xlarge', output_path=s3_output_path, sagemaker_session=sess)

After you create the XGBoost estimator object, set its initial hyperparameter values as shown in the following code:

xgb.set_hyperparameters(eval_metric='auc', objective= 'binary:logistic', num_round=200, rate_drop=0.3, max_depth=5, subsample=0.8, gamma=2, eta=0.2, scale_pos_weight=2.85) #For class imbalance weights # Specifying the objective metric (auc on validation set)
OBJECTIVE_METRIC_NAME = ‘validation:auc’ # specifying the hyper parameters and their ranges
HYPERPARAMETER_RANGES = {'eta': ContinuousParameter(0, 1), 'alpha': ContinuousParameter(0, 2), 'max_depth': IntegerParameter(1, 10)}

For this post, AUC (area under the ROC curve) is the evaluation metric. This enables the tuning job to measure the performance of the different training jobs. The kick prediction is also a binary classification problem, which is specified in the objective argument as a binary:logistic. There is also a set of XGBoost-specific hyperparameters that you can tune. For more information, see Tune an XGBoost model.

Next, create a HyperparameterTuner object by indicating the XGBoost estimator, the hyperparameter ranges, passing the parameters, the objective metric name and definition, and tuning resource configurations, such as the number of training jobs to run in total and how many training jobs can run in parallel. Amazon SageMaker extracts the metric from Amazon CloudWatch Logs with a regular expression. See the following code:

tuner = HyperparameterTuner(xgb, OBJECTIVE_METRIC_NAME, HYPERPARAMETER_RANGES, max_jobs=20, max_parallel_jobs=4)
s3_input_train = sagemaker.s3_input(s3_data='s3://{}/{}/train'.format(BUCKET, PREFIX), content_type='csv')
s3_input_validation = sagemaker.s3_input(s3_data='s3://{}/{}/validation/'.format(BUCKET, PREFIX), content_type='csv')
tuner.fit({'train': s3_input_train, 'validation':

Finally, launch a hyperparameter tuning job by calling the fit() function. This function takes the paths of the training and validation datasets in the S3 bucket. After you create the hyperparameter tuning job, you can track its progress via the Amazon SageMaker console. The training time depends on the instance type and number of instances you selected during tuning setup.

Deploying the model on Amazon SageMaker

When the training jobs are complete, you can deploy the best performing model. If you’d like to compare models for A/B testing, Amazon SageMaker supports hosting representational state transfer (REST) endpoints for multiple models. To set this up, create an endpoint configuration that describes the distribution of traffic across the models. In addition, the endpoint configuration describes the instance type required for model deployment. The first step is to get the name of the best performing training job and create the model name.

After you create the endpoint configuration, you’re ready to deploy the actual endpoint for serving inference requests. The result is an endpoint that can you can validate and incorporate into production applications. For more information about deploying models, see Deploy the Model to Amazon SageMaker Hosting Services. To create the endpoint configuration and deploy it, enter the following code:

endpoint_name = 'Kicker-XGBoostEndpoint'
xgb_predictor = tuner.deploy(initial_instance_count=1, instance_type='ml.t2.medium', endpoint_name=endpoint_name)

After you create the endpoint, you can request a prediction in real time.

Building a RESTful API for real-time model inference

You can create a secure and scalable RESTful API that enables you to request the model prediction based on the input values. It’s easy and convenient to develop different APIs using AWS services.

The following diagram illustrates the model inference workflow.

First, you request the probability of the kick conversion by passing parameters through Amazon API Gateway, such as the location and zone of the kick, kicker ID, league and Championship ID, the game’s period, if the kicker’s team is playing home or away, and the team score status.

The API Gateway passes the values to the AWS Lambda function, which parses the values and requests additional features related to the player’s performance from DynamoDB lookup tables. These include the mean success rates of the kicking player in a given field zone, in the Championship, and in the kicker’s entire career. If the player doesn’t exist in the database, the model uses the average performance in the database in the given kicking location. After the function combines all the values, it standardizes the data and sends it to the Amazon SageMaker model endpoint for prediction.

The model performs the prediction and returns the predicted probability to the Lambda function. The function parses the returned value and sends it back to API Gateway. API Gateway responds with the output prediction. The end-to-end process latency is less than a second.

The following screenshot shows example input and output of the API. The RESTful API also outputs the average success rate of all the players in the given location and zone to get the comparison of the player’s performance with the overall average.

For instructions on creating a RESTful API, see Call an Amazon SageMaker model endpoint using Amazon API Gateway and AWS Lambda.

Bringing design principles into sports analytics

To create the first real-time prediction model for the tournament with a millisecond latency requirement, the ML Solutions Lab team worked backwards to identify areas in which design thinking could save time and resources. The team worked on an end-to-end notebook within an Amazon SageMaker environment, which enabled data access, raw data parsing, data preprocessing and visualization, feature engineering, model training and evaluation, and model deployment in one place. This helped in automating the modeling process.

Moreover, the ML Solutions Lab team implemented a model update iteration for when the model was updated with newly generated data, in which the model parses and processes only the additional data. This brings computational and time efficiencies to the modeling.

In terms of next steps, the Stats Perform AI team has been looking at the next stage of rugby analysis by breaking down the other strategic facets as line-outs, scrums and teams, and continuous phases of play using the fine-grain spatio-temporal data captured. The state-of-the-art feature representations and latent factor modelling (which have been utilized so effectively in Stats Perform’s “Edge” match-analysis and recruitment products in soccer) means that there is plenty of fertile space for innovation that can be explored in rugby.

Conclusion

Six Nations Rugby, Stats Perform, and AWS came together to bring the first real-time prediction model to the 2020 Guinness Six Nations Rugby Championship. The model determined a penalty or conversion kick success probability from anywhere in the field. They used Amazon SageMaker to build, train, and deploy the ML model with variables grouped into three main categories: location-based features, player performance features, and in-game situational features. The Amazon SageMaker endpoint provided prediction results with subsecond latency. The model was used by broadcasters during the live games in the Six Nations 2020 Championship, bringing a new metric to millions of rugby fans.

You can find full, end-to-end examples of creating custom training jobs, training state-of-the-art object detection models, and model deployment on Amazon SageMaker on the AWS Labs GitHub repo. To learn more about the ML Solutions Lab, see Amazon Machine Learning Solutions Lab.


About the Authors

Mehdi Noori is a Data Scientist at the Amazon ML Solutions Lab, where he works with customers across various verticals, and helps them to accelerate their cloud migration journey, and to solve their ML problems using state-of-the-art solutions and technologies.

Tesfagabir Meharizghi is a Data Scientist at the Amazon ML Solutions Lab where he works with customers across different verticals accelerate their use of artificial intelligence and AWS cloud services to solve their business challenges. Outside of work, he enjoys spending time with his family and reading books.

Patrick Lucey is the Chief Scientist at Stats Perform. Patrick started the Artificial Intelligence group at Stats Perform in 2015, with thegroup focusing on both computer vision and predictive modelling capabilities in sport. Previously, he was at Disney Research for 5 years, where he conducted research into automatic sports broadcasting using large amounts of spatiotemporal tracking data. He received his BEng(EE) from USQ and PhD from QUT, Australia in 2003 and 2008 respectively. He was also co-author of the best paper at the 2016 MIT Sloan Sports Analytics Conference and in 2017 & 2018 was co-author of best-paper runner-up at the same conference.

Xavier Ragot is Data Scientist with the Amazon ML Solution Lab team where he helps design creative ML solution to address customers’ business problems in various industries.

Source: https://aws.amazon.com/blogs/machine-learning/bringing-real-time-machine-learning-powered-insights-to-rugby-using-amazon-sagemaker/

Continue Reading

AI

Bringing real-time machine learning-powered insights to rugby using Amazon SageMaker

The Guinness Six Nations Championship began in 1883 as the Home Nations Championship among England, Ireland, Scotland, and Wales, with the inclusion of France in 1910 and Italy in 2000. It is among the oldest surviving rugby traditions and one of the best-attended sporting events in the world. The COVID-19 outbreak disrupted the end of […]

Published

on

The Guinness Six Nations Championship began in 1883 as the Home Nations Championship among England, Ireland, Scotland, and Wales, with the inclusion of France in 1910 and Italy in 2000. It is among the oldest surviving rugby traditions and one of the best-attended sporting events in the world. The COVID-19 outbreak disrupted the end of the 2020 Championship and four games were postponed. The remaining rounds resumed on October 24. With the increasing application of artificial intelligence and machine learning (ML) in sports analytics, AWS and Stats Perform partnered to bring ML-powered, real-time stats to the game of rugby, to enhance fan engagement and provide valuable insights into the game.

This post summarizes the collaborative effort between the Guinness Six Nations Rugby Championship, Stats Perform, and AWS to develop an ML-driven approach with Amazon SageMaker and other AWS services that predicts the probability of a successful penalty kick, computed in real time and broadcast live during the game. AWS infrastructure enables single-digit millisecond latency for kick predictions during inference. The Kick Predictor stat is one of the many new AWS-powered, on-screen dynamic Matchstats that provide fans with a greater understanding of key in-game events, including scrum analysis, play patterns, rucks and tackles, and power game analysis. For more information about other stats developed for rugby using AWS services, see the Six Nations Rugby website.

Rugby is a form of football with a 23-player match day squad. 15 players on each team are on the field, with additional substitutions waiting to get involved in the full-contact sport. The objective of the game is to outscore the opposing team, and one way of scoring is to kick a goal. The ability to kick accurately is one of the most critical elements of rugby, and there are two ways to score with a kick: through a conversion (worth two points) and a penalty (worth three points).

Predicting the likelihood of a successful kick is important because it enhances fan engagement during the game by showing the success probability before the player kicks the ball. There are usually 40–60 seconds of stoppage time while the player sets up for the kick, during which the Kick Predictor stat can appear on-screen to fans. Commentators also have time to predict the outcome, quantify the difficulty of each kick, and compare kickers in similar situations. Moreover, teams may start to use kicking probability models in the future to determine which player should kick given the position of the penalty on the pitch.

Developing an ML solution

To calculate the penalty success probability, the Amazon Machine Learning Solutions Lab used Amazon SageMaker to train, test, and deploy an ML model from historical in-game events data, which calculates the kick predictions from anywhere in the field. The following sections explain the dataset and preprocessing steps, the model training, and model deployment procedures.

Dataset and preprocessing

Stats Perform provided the dataset for training the goal kick model. It contained millions of events from historical rugby matches from 46 leagues from 2007–2019. The raw JSON events data that was collected during live rugby matches was ingested and stored on Amazon Simple Storage Service (Amazon S3). It was then parsed and preprocessed in an Amazon SageMaker notebook instance. After selecting the kick-related events, the training data comprised approximately 67,000 kicks, with approximately 50,000 (75%) successful kicks and 17,000 misses (25%).

The following graph shows a summary of kicks taken during a sample game. The athletes kicked from different angles and various distances.

Rugby experts contributed valuable insights to the data preprocessing, which included detecting and removing anomalies, such as unreasonable kicks. The clean CSV data went back to an S3 bucket for ML training.

The following graph depicts the heatmap of the kicks after preprocessing. The left-side kicks are mirrored. The brighter colors indicated a higher chance of scoring, standardized between 0 to 1.

Feature engineering

To better capture the real-world event, the ML Solutions Lab engineered several features using exploratory data analysis and insights from rugby experts. The features that went into the modeling fell into three main categories:

  • Location-based features – The zone in which the athlete takes the kick and the distance and angle of the kick to the goal. The x-coordinates of the kicks are mirrored along the center of the rugby pitch to eliminate the left or right bias in the model.
  • Player performance features – The mean success rates of the kicker in a given field zone, in the Championship, and in the kicker’s entire career.
  • In-game situational features – The kicker’s team (home or away), the scoring situation before they take the kick, and the period of the game in which they take the kick.

The location-based and player performance features are the most important features in the model.

After feature engineering, the categorical variables were one-hot encoded, and to avoid the bias of the model towards large-value variables, the numerical predictors were standardized. During the model training phase, a player’s historical performance features were pushed to Amazon DynamoDB tables. DynamoDB helped provide single-digit millisecond latency for kick predictions during inference.

Training and deploying models

To explore a wide range of classification algorithms (such as logistic regression, random forests, XGBoost, and neural networks), a 10-fold stratified cross-validation approach was used for model training. After exploring different algorithms, the built-in XGBoost in Amazon SageMaker was used due to its better prediction performance and inference speed. Additionally, its implementation has a smaller memory footprint, better logging, and improved hyperparameter optimization (HPO) compared to the original code base.

HPO, or tuning, is the process of choosing a set of optimal hyperparameters for a learning algorithm, and is a challenging element in any ML problem. HPO in Amazon SageMaker uses an implementation of Bayesian optimization to choose the best hyperparameters for the next training job. Amazon SageMaker HPO automatically launches multiple training jobs with different hyperparameter settings, evaluates the results of those training jobs based on a predefined objective metric, and selects improved hyperparameter settings for future attempts based on previous results.

The following diagram illustrates the model training workflow.

Optimizing hyperparameters in Amazon SageMaker

You can configure training jobs and when the hyperparameter tuning job launches by initializing an estimator, which includes the container image for the algorithm (for this use case, XGBoost), configuration for the output of the training jobs, the values of static algorithm hyperparameters, and the type and number of instances to use for the training jobs. For more information, see Train a Model.

To create the XGBoost estimator for this use case, enter the following code:

import boto3
import sagemaker
from sagemaker.tuner import IntegerParameter, CategoricalParameter, ContinuousParameter, HyperparameterTuner
from sagemaker.amazon.amazon_estimator import get_image_uri
BUCKET = <bucket name>
PREFIX = 'kicker/xgboost/'
region = boto3.Session().region_name
role = sagemaker.get_execution_role()
smclient = boto3.Session().client('sagemaker')
sess = sagemaker.Session()
s3_output_path = ‘s3://{}/{}/output’.format(BUCKET, PREFIX) container = get_image_uri(region, 'xgboost', repo_version='0.90-1') xgb = sagemaker.estimator.Estimator(container, role, train_instance_count=4, train_instance_type= 'ml.m4.xlarge', output_path=s3_output_path, sagemaker_session=sess)

After you create the XGBoost estimator object, set its initial hyperparameter values as shown in the following code:

xgb.set_hyperparameters(eval_metric='auc', objective= 'binary:logistic', num_round=200, rate_drop=0.3, max_depth=5, subsample=0.8, gamma=2, eta=0.2, scale_pos_weight=2.85) #For class imbalance weights # Specifying the objective metric (auc on validation set)
OBJECTIVE_METRIC_NAME = ‘validation:auc’ # specifying the hyper parameters and their ranges
HYPERPARAMETER_RANGES = {'eta': ContinuousParameter(0, 1), 'alpha': ContinuousParameter(0, 2), 'max_depth': IntegerParameter(1, 10)}

For this post, AUC (area under the ROC curve) is the evaluation metric. This enables the tuning job to measure the performance of the different training jobs. The kick prediction is also a binary classification problem, which is specified in the objective argument as a binary:logistic. There is also a set of XGBoost-specific hyperparameters that you can tune. For more information, see Tune an XGBoost model.

Next, create a HyperparameterTuner object by indicating the XGBoost estimator, the hyperparameter ranges, passing the parameters, the objective metric name and definition, and tuning resource configurations, such as the number of training jobs to run in total and how many training jobs can run in parallel. Amazon SageMaker extracts the metric from Amazon CloudWatch Logs with a regular expression. See the following code:

tuner = HyperparameterTuner(xgb, OBJECTIVE_METRIC_NAME, HYPERPARAMETER_RANGES, max_jobs=20, max_parallel_jobs=4)
s3_input_train = sagemaker.s3_input(s3_data='s3://{}/{}/train'.format(BUCKET, PREFIX), content_type='csv')
s3_input_validation = sagemaker.s3_input(s3_data='s3://{}/{}/validation/'.format(BUCKET, PREFIX), content_type='csv')
tuner.fit({'train': s3_input_train, 'validation':

Finally, launch a hyperparameter tuning job by calling the fit() function. This function takes the paths of the training and validation datasets in the S3 bucket. After you create the hyperparameter tuning job, you can track its progress via the Amazon SageMaker console. The training time depends on the instance type and number of instances you selected during tuning setup.

Deploying the model on Amazon SageMaker

When the training jobs are complete, you can deploy the best performing model. If you’d like to compare models for A/B testing, Amazon SageMaker supports hosting representational state transfer (REST) endpoints for multiple models. To set this up, create an endpoint configuration that describes the distribution of traffic across the models. In addition, the endpoint configuration describes the instance type required for model deployment. The first step is to get the name of the best performing training job and create the model name.

After you create the endpoint configuration, you’re ready to deploy the actual endpoint for serving inference requests. The result is an endpoint that can you can validate and incorporate into production applications. For more information about deploying models, see Deploy the Model to Amazon SageMaker Hosting Services. To create the endpoint configuration and deploy it, enter the following code:

endpoint_name = 'Kicker-XGBoostEndpoint'
xgb_predictor = tuner.deploy(initial_instance_count=1, instance_type='ml.t2.medium', endpoint_name=endpoint_name)

After you create the endpoint, you can request a prediction in real time.

Building a RESTful API for real-time model inference

You can create a secure and scalable RESTful API that enables you to request the model prediction based on the input values. It’s easy and convenient to develop different APIs using AWS services.

The following diagram illustrates the model inference workflow.

First, you request the probability of the kick conversion by passing parameters through Amazon API Gateway, such as the location and zone of the kick, kicker ID, league and Championship ID, the game’s period, if the kicker’s team is playing home or away, and the team score status.

The API Gateway passes the values to the AWS Lambda function, which parses the values and requests additional features related to the player’s performance from DynamoDB lookup tables. These include the mean success rates of the kicking player in a given field zone, in the Championship, and in the kicker’s entire career. If the player doesn’t exist in the database, the model uses the average performance in the database in the given kicking location. After the function combines all the values, it standardizes the data and sends it to the Amazon SageMaker model endpoint for prediction.

The model performs the prediction and returns the predicted probability to the Lambda function. The function parses the returned value and sends it back to API Gateway. API Gateway responds with the output prediction. The end-to-end process latency is less than a second.

The following screenshot shows example input and output of the API. The RESTful API also outputs the average success rate of all the players in the given location and zone to get the comparison of the player’s performance with the overall average.

For instructions on creating a RESTful API, see Call an Amazon SageMaker model endpoint using Amazon API Gateway and AWS Lambda.

Bringing design principles into sports analytics

To create the first real-time prediction model for the tournament with a millisecond latency requirement, the ML Solutions Lab team worked backwards to identify areas in which design thinking could save time and resources. The team worked on an end-to-end notebook within an Amazon SageMaker environment, which enabled data access, raw data parsing, data preprocessing and visualization, feature engineering, model training and evaluation, and model deployment in one place. This helped in automating the modeling process.

Moreover, the ML Solutions Lab team implemented a model update iteration for when the model was updated with newly generated data, in which the model parses and processes only the additional data. This brings computational and time efficiencies to the modeling.

In terms of next steps, the Stats Perform AI team has been looking at the next stage of rugby analysis by breaking down the other strategic facets as line-outs, scrums and teams, and continuous phases of play using the fine-grain spatio-temporal data captured. The state-of-the-art feature representations and latent factor modelling (which have been utilized so effectively in Stats Perform’s “Edge” match-analysis and recruitment products in soccer) means that there is plenty of fertile space for innovation that can be explored in rugby.

Conclusion

Six Nations Rugby, Stats Perform, and AWS came together to bring the first real-time prediction model to the 2020 Guinness Six Nations Rugby Championship. The model determined a penalty or conversion kick success probability from anywhere in the field. They used Amazon SageMaker to build, train, and deploy the ML model with variables grouped into three main categories: location-based features, player performance features, and in-game situational features. The Amazon SageMaker endpoint provided prediction results with subsecond latency. The model was used by broadcasters during the live games in the Six Nations 2020 Championship, bringing a new metric to millions of rugby fans.

You can find full, end-to-end examples of creating custom training jobs, training state-of-the-art object detection models, and model deployment on Amazon SageMaker on the AWS Labs GitHub repo. To learn more about the ML Solutions Lab, see Amazon Machine Learning Solutions Lab.


About the Authors

Mehdi Noori is a Data Scientist at the Amazon ML Solutions Lab, where he works with customers across various verticals, and helps them to accelerate their cloud migration journey, and to solve their ML problems using state-of-the-art solutions and technologies.

Tesfagabir Meharizghi is a Data Scientist at the Amazon ML Solutions Lab where he works with customers across different verticals accelerate their use of artificial intelligence and AWS cloud services to solve their business challenges. Outside of work, he enjoys spending time with his family and reading books.

Patrick Lucey is the Chief Scientist at Stats Perform. Patrick started the Artificial Intelligence group at Stats Perform in 2015, with thegroup focusing on both computer vision and predictive modelling capabilities in sport. Previously, he was at Disney Research for 5 years, where he conducted research into automatic sports broadcasting using large amounts of spatiotemporal tracking data. He received his BEng(EE) from USQ and PhD from QUT, Australia in 2003 and 2008 respectively. He was also co-author of the best paper at the 2016 MIT Sloan Sports Analytics Conference and in 2017 & 2018 was co-author of best-paper runner-up at the same conference.

Xavier Ragot is Data Scientist with the Amazon ML Solution Lab team where he helps design creative ML solution to address customers’ business problems in various industries.

Source: https://aws.amazon.com/blogs/machine-learning/bringing-real-time-machine-learning-powered-insights-to-rugby-using-amazon-sagemaker/

Continue Reading

AI

Bringing real-time machine learning-powered insights to rugby using Amazon SageMaker

The Guinness Six Nations Championship began in 1883 as the Home Nations Championship among England, Ireland, Scotland, and Wales, with the inclusion of France in 1910 and Italy in 2000. It is among the oldest surviving rugby traditions and one of the best-attended sporting events in the world. The COVID-19 outbreak disrupted the end of […]

Published

on

The Guinness Six Nations Championship began in 1883 as the Home Nations Championship among England, Ireland, Scotland, and Wales, with the inclusion of France in 1910 and Italy in 2000. It is among the oldest surviving rugby traditions and one of the best-attended sporting events in the world. The COVID-19 outbreak disrupted the end of the 2020 Championship and four games were postponed. The remaining rounds resumed on October 24. With the increasing application of artificial intelligence and machine learning (ML) in sports analytics, AWS and Stats Perform partnered to bring ML-powered, real-time stats to the game of rugby, to enhance fan engagement and provide valuable insights into the game.

This post summarizes the collaborative effort between the Guinness Six Nations Rugby Championship, Stats Perform, and AWS to develop an ML-driven approach with Amazon SageMaker and other AWS services that predicts the probability of a successful penalty kick, computed in real time and broadcast live during the game. AWS infrastructure enables single-digit millisecond latency for kick predictions during inference. The Kick Predictor stat is one of the many new AWS-powered, on-screen dynamic Matchstats that provide fans with a greater understanding of key in-game events, including scrum analysis, play patterns, rucks and tackles, and power game analysis. For more information about other stats developed for rugby using AWS services, see the Six Nations Rugby website.

Rugby is a form of football with a 23-player match day squad. 15 players on each team are on the field, with additional substitutions waiting to get involved in the full-contact sport. The objective of the game is to outscore the opposing team, and one way of scoring is to kick a goal. The ability to kick accurately is one of the most critical elements of rugby, and there are two ways to score with a kick: through a conversion (worth two points) and a penalty (worth three points).

Predicting the likelihood of a successful kick is important because it enhances fan engagement during the game by showing the success probability before the player kicks the ball. There are usually 40–60 seconds of stoppage time while the player sets up for the kick, during which the Kick Predictor stat can appear on-screen to fans. Commentators also have time to predict the outcome, quantify the difficulty of each kick, and compare kickers in similar situations. Moreover, teams may start to use kicking probability models in the future to determine which player should kick given the position of the penalty on the pitch.

Developing an ML solution

To calculate the penalty success probability, the Amazon Machine Learning Solutions Lab used Amazon SageMaker to train, test, and deploy an ML model from historical in-game events data, which calculates the kick predictions from anywhere in the field. The following sections explain the dataset and preprocessing steps, the model training, and model deployment procedures.

Dataset and preprocessing

Stats Perform provided the dataset for training the goal kick model. It contained millions of events from historical rugby matches from 46 leagues from 2007–2019. The raw JSON events data that was collected during live rugby matches was ingested and stored on Amazon Simple Storage Service (Amazon S3). It was then parsed and preprocessed in an Amazon SageMaker notebook instance. After selecting the kick-related events, the training data comprised approximately 67,000 kicks, with approximately 50,000 (75%) successful kicks and 17,000 misses (25%).

The following graph shows a summary of kicks taken during a sample game. The athletes kicked from different angles and various distances.

Rugby experts contributed valuable insights to the data preprocessing, which included detecting and removing anomalies, such as unreasonable kicks. The clean CSV data went back to an S3 bucket for ML training.

The following graph depicts the heatmap of the kicks after preprocessing. The left-side kicks are mirrored. The brighter colors indicated a higher chance of scoring, standardized between 0 to 1.

Feature engineering

To better capture the real-world event, the ML Solutions Lab engineered several features using exploratory data analysis and insights from rugby experts. The features that went into the modeling fell into three main categories:

  • Location-based features – The zone in which the athlete takes the kick and the distance and angle of the kick to the goal. The x-coordinates of the kicks are mirrored along the center of the rugby pitch to eliminate the left or right bias in the model.
  • Player performance features – The mean success rates of the kicker in a given field zone, in the Championship, and in the kicker’s entire career.
  • In-game situational features – The kicker’s team (home or away), the scoring situation before they take the kick, and the period of the game in which they take the kick.

The location-based and player performance features are the most important features in the model.

After feature engineering, the categorical variables were one-hot encoded, and to avoid the bias of the model towards large-value variables, the numerical predictors were standardized. During the model training phase, a player’s historical performance features were pushed to Amazon DynamoDB tables. DynamoDB helped provide single-digit millisecond latency for kick predictions during inference.

Training and deploying models

To explore a wide range of classification algorithms (such as logistic regression, random forests, XGBoost, and neural networks), a 10-fold stratified cross-validation approach was used for model training. After exploring different algorithms, the built-in XGBoost in Amazon SageMaker was used due to its better prediction performance and inference speed. Additionally, its implementation has a smaller memory footprint, better logging, and improved hyperparameter optimization (HPO) compared to the original code base.

HPO, or tuning, is the process of choosing a set of optimal hyperparameters for a learning algorithm, and is a challenging element in any ML problem. HPO in Amazon SageMaker uses an implementation of Bayesian optimization to choose the best hyperparameters for the next training job. Amazon SageMaker HPO automatically launches multiple training jobs with different hyperparameter settings, evaluates the results of those training jobs based on a predefined objective metric, and selects improved hyperparameter settings for future attempts based on previous results.

The following diagram illustrates the model training workflow.

Optimizing hyperparameters in Amazon SageMaker

You can configure training jobs and when the hyperparameter tuning job launches by initializing an estimator, which includes the container image for the algorithm (for this use case, XGBoost), configuration for the output of the training jobs, the values of static algorithm hyperparameters, and the type and number of instances to use for the training jobs. For more information, see Train a Model.

To create the XGBoost estimator for this use case, enter the following code:

import boto3
import sagemaker
from sagemaker.tuner import IntegerParameter, CategoricalParameter, ContinuousParameter, HyperparameterTuner
from sagemaker.amazon.amazon_estimator import get_image_uri
BUCKET = <bucket name>
PREFIX = 'kicker/xgboost/'
region = boto3.Session().region_name
role = sagemaker.get_execution_role()
smclient = boto3.Session().client('sagemaker')
sess = sagemaker.Session()
s3_output_path = ‘s3://{}/{}/output’.format(BUCKET, PREFIX) container = get_image_uri(region, 'xgboost', repo_version='0.90-1') xgb = sagemaker.estimator.Estimator(container, role, train_instance_count=4, train_instance_type= 'ml.m4.xlarge', output_path=s3_output_path, sagemaker_session=sess)

After you create the XGBoost estimator object, set its initial hyperparameter values as shown in the following code:

xgb.set_hyperparameters(eval_metric='auc', objective= 'binary:logistic', num_round=200, rate_drop=0.3, max_depth=5, subsample=0.8, gamma=2, eta=0.2, scale_pos_weight=2.85) #For class imbalance weights # Specifying the objective metric (auc on validation set)
OBJECTIVE_METRIC_NAME = ‘validation:auc’ # specifying the hyper parameters and their ranges
HYPERPARAMETER_RANGES = {'eta': ContinuousParameter(0, 1), 'alpha': ContinuousParameter(0, 2), 'max_depth': IntegerParameter(1, 10)}

For this post, AUC (area under the ROC curve) is the evaluation metric. This enables the tuning job to measure the performance of the different training jobs. The kick prediction is also a binary classification problem, which is specified in the objective argument as a binary:logistic. There is also a set of XGBoost-specific hyperparameters that you can tune. For more information, see Tune an XGBoost model.

Next, create a HyperparameterTuner object by indicating the XGBoost estimator, the hyperparameter ranges, passing the parameters, the objective metric name and definition, and tuning resource configurations, such as the number of training jobs to run in total and how many training jobs can run in parallel. Amazon SageMaker extracts the metric from Amazon CloudWatch Logs with a regular expression. See the following code:

tuner = HyperparameterTuner(xgb, OBJECTIVE_METRIC_NAME, HYPERPARAMETER_RANGES, max_jobs=20, max_parallel_jobs=4)
s3_input_train = sagemaker.s3_input(s3_data='s3://{}/{}/train'.format(BUCKET, PREFIX), content_type='csv')
s3_input_validation = sagemaker.s3_input(s3_data='s3://{}/{}/validation/'.format(BUCKET, PREFIX), content_type='csv')
tuner.fit({'train': s3_input_train, 'validation':

Finally, launch a hyperparameter tuning job by calling the fit() function. This function takes the paths of the training and validation datasets in the S3 bucket. After you create the hyperparameter tuning job, you can track its progress via the Amazon SageMaker console. The training time depends on the instance type and number of instances you selected during tuning setup.

Deploying the model on Amazon SageMaker

When the training jobs are complete, you can deploy the best performing model. If you’d like to compare models for A/B testing, Amazon SageMaker supports hosting representational state transfer (REST) endpoints for multiple models. To set this up, create an endpoint configuration that describes the distribution of traffic across the models. In addition, the endpoint configuration describes the instance type required for model deployment. The first step is to get the name of the best performing training job and create the model name.

After you create the endpoint configuration, you’re ready to deploy the actual endpoint for serving inference requests. The result is an endpoint that can you can validate and incorporate into production applications. For more information about deploying models, see Deploy the Model to Amazon SageMaker Hosting Services. To create the endpoint configuration and deploy it, enter the following code:

endpoint_name = 'Kicker-XGBoostEndpoint'
xgb_predictor = tuner.deploy(initial_instance_count=1, instance_type='ml.t2.medium', endpoint_name=endpoint_name)

After you create the endpoint, you can request a prediction in real time.

Building a RESTful API for real-time model inference

You can create a secure and scalable RESTful API that enables you to request the model prediction based on the input values. It’s easy and convenient to develop different APIs using AWS services.

The following diagram illustrates the model inference workflow.

First, you request the probability of the kick conversion by passing parameters through Amazon API Gateway, such as the location and zone of the kick, kicker ID, league and Championship ID, the game’s period, if the kicker’s team is playing home or away, and the team score status.

The API Gateway passes the values to the AWS Lambda function, which parses the values and requests additional features related to the player’s performance from DynamoDB lookup tables. These include the mean success rates of the kicking player in a given field zone, in the Championship, and in the kicker’s entire career. If the player doesn’t exist in the database, the model uses the average performance in the database in the given kicking location. After the function combines all the values, it standardizes the data and sends it to the Amazon SageMaker model endpoint for prediction.

The model performs the prediction and returns the predicted probability to the Lambda function. The function parses the returned value and sends it back to API Gateway. API Gateway responds with the output prediction. The end-to-end process latency is less than a second.

The following screenshot shows example input and output of the API. The RESTful API also outputs the average success rate of all the players in the given location and zone to get the comparison of the player’s performance with the overall average.

For instructions on creating a RESTful API, see Call an Amazon SageMaker model endpoint using Amazon API Gateway and AWS Lambda.

Bringing design principles into sports analytics

To create the first real-time prediction model for the tournament with a millisecond latency requirement, the ML Solutions Lab team worked backwards to identify areas in which design thinking could save time and resources. The team worked on an end-to-end notebook within an Amazon SageMaker environment, which enabled data access, raw data parsing, data preprocessing and visualization, feature engineering, model training and evaluation, and model deployment in one place. This helped in automating the modeling process.

Moreover, the ML Solutions Lab team implemented a model update iteration for when the model was updated with newly generated data, in which the model parses and processes only the additional data. This brings computational and time efficiencies to the modeling.

In terms of next steps, the Stats Perform AI team has been looking at the next stage of rugby analysis by breaking down the other strategic facets as line-outs, scrums and teams, and continuous phases of play using the fine-grain spatio-temporal data captured. The state-of-the-art feature representations and latent factor modelling (which have been utilized so effectively in Stats Perform’s “Edge” match-analysis and recruitment products in soccer) means that there is plenty of fertile space for innovation that can be explored in rugby.

Conclusion

Six Nations Rugby, Stats Perform, and AWS came together to bring the first real-time prediction model to the 2020 Guinness Six Nations Rugby Championship. The model determined a penalty or conversion kick success probability from anywhere in the field. They used Amazon SageMaker to build, train, and deploy the ML model with variables grouped into three main categories: location-based features, player performance features, and in-game situational features. The Amazon SageMaker endpoint provided prediction results with subsecond latency. The model was used by broadcasters during the live games in the Six Nations 2020 Championship, bringing a new metric to millions of rugby fans.

You can find full, end-to-end examples of creating custom training jobs, training state-of-the-art object detection models, and model deployment on Amazon SageMaker on the AWS Labs GitHub repo. To learn more about the ML Solutions Lab, see Amazon Machine Learning Solutions Lab.


About the Authors

Mehdi Noori is a Data Scientist at the Amazon ML Solutions Lab, where he works with customers across various verticals, and helps them to accelerate their cloud migration journey, and to solve their ML problems using state-of-the-art solutions and technologies.

Tesfagabir Meharizghi is a Data Scientist at the Amazon ML Solutions Lab where he works with customers across different verticals accelerate their use of artificial intelligence and AWS cloud services to solve their business challenges. Outside of work, he enjoys spending time with his family and reading books.

Patrick Lucey is the Chief Scientist at Stats Perform. Patrick started the Artificial Intelligence group at Stats Perform in 2015, with thegroup focusing on both computer vision and predictive modelling capabilities in sport. Previously, he was at Disney Research for 5 years, where he conducted research into automatic sports broadcasting using large amounts of spatiotemporal tracking data. He received his BEng(EE) from USQ and PhD from QUT, Australia in 2003 and 2008 respectively. He was also co-author of the best paper at the 2016 MIT Sloan Sports Analytics Conference and in 2017 & 2018 was co-author of best-paper runner-up at the same conference.

Xavier Ragot is Data Scientist with the Amazon ML Solution Lab team where he helps design creative ML solution to address customers’ business problems in various industries.

Source: https://aws.amazon.com/blogs/machine-learning/bringing-real-time-machine-learning-powered-insights-to-rugby-using-amazon-sagemaker/

Continue Reading
AI9 hours ago

Bringing real-time machine learning-powered insights to rugby using Amazon SageMaker

AI9 hours ago

Bringing real-time machine learning-powered insights to rugby using Amazon SageMaker

AI9 hours ago

Bringing real-time machine learning-powered insights to rugby using Amazon SageMaker

AI9 hours ago

Bringing real-time machine learning-powered insights to rugby using Amazon SageMaker

AI9 hours ago

Bringing real-time machine learning-powered insights to rugby using Amazon SageMaker

AI9 hours ago

Bringing real-time machine learning-powered insights to rugby using Amazon SageMaker

AI9 hours ago

Bringing real-time machine learning-powered insights to rugby using Amazon SageMaker

AI9 hours ago

Bringing real-time machine learning-powered insights to rugby using Amazon SageMaker

AI9 hours ago

Bringing real-time machine learning-powered insights to rugby using Amazon SageMaker

AI9 hours ago

Bringing real-time machine learning-powered insights to rugby using Amazon SageMaker

AI9 hours ago

Bringing real-time machine learning-powered insights to rugby using Amazon SageMaker

AI9 hours ago

Bringing real-time machine learning-powered insights to rugby using Amazon SageMaker

AI9 hours ago

Building an NLU-powered search application with Amazon SageMaker and the Amazon ES KNN feature

AI9 hours ago

Building an NLU-powered search application with Amazon SageMaker and the Amazon ES KNN feature

AI9 hours ago

Building an NLU-powered search application with Amazon SageMaker and the Amazon ES KNN feature

AI9 hours ago

Building an NLU-powered search application with Amazon SageMaker and the Amazon ES KNN feature

AI9 hours ago

Building an NLU-powered search application with Amazon SageMaker and the Amazon ES KNN feature

AI9 hours ago

Building an NLU-powered search application with Amazon SageMaker and the Amazon ES KNN feature

AI9 hours ago

Building an NLU-powered search application with Amazon SageMaker and the Amazon ES KNN feature

AI9 hours ago

Building an NLU-powered search application with Amazon SageMaker and the Amazon ES KNN feature

Trending