Connect with us

AI

Earnings Multipliers: How to Make $10,000 a Month with Chatbots

Published

on

Eyelevel.ai

We at Eyelevel.ai (AKA Cashbot.ai) are excited to announce a huge enhancement to our platform. We think you’re going to love it!

Eyelevel for Publishers keeps making it easier to earn income, with chatbots, from home!
New Chatbot Monetization Features to Help you Make Money with Chatbots!

For over two years, we’ve been trying to help chatbot makers, developers, owners and operators — make money from their amazing chatbot creations.

We’ve come to work with huge tier-one media companies with chatbots, and we’ve worked with those individuals who love to build chatbots. We love working with them all. To us, it’s all the same, deliver the same four value propositions and let the ecosystem benefit.

Make it super easy to earn money from chatbots.

Make it lucrative.

Make it so the end-users love it.

Make it simple to install, measure and modify.

Today we partner with thousands of Botmakers folks and over the past 2 years we’ve grown our network to over 1,900 “publishers” who use our platform to monetize their chatbots and interactions between those bots and their audience.

During that time, we’ve come across some great Chatbots and some great Chatbot Publishers and some bad chatbots and some bad Chatbot Publishers.

We wanted a way to reward the best Botmakers & Publishers in our network because we want them to keep doing what they’re doing and hopefully tell their friends. That’s how we see this ecosystem growing.

Multiply your Chatbot Earnings with the EyeLevel for Publishers Earings Multiplier!

This enhancement, called Earnings Multiplier, is very simple to understand. We apply a multiplier to your overall earnings, which are generated each time your users click on ads.

Example: Currently we’re paying out $0.75 per click from a USA user. In your bot, if users click on that ad 10 times you’ll earn $7.50. With a multiplier of 2, you’ll actually have earned $15.00!!!

Every Earnings Multiplier is Set at 1x by default. The cool things you do with your chatbot will cause it to increase and for you to make more money!

You’re probably asking yourself…

What’s the formula for figuring out my multiplier?”

We factor over a dozen parameters when determining your Earnings Multiplier. Most are pretty straightforward, some are proprietary.

The important ones are:

  1. You have an engaged chatbot audience and is that audience growing.
  2. You value our service and demonstrate you understand that our advertisers have to receive value for this business to work.
  3. You implement our integrations correctly and post the required attributes consistently.
  4. You follow our TOS and don’t violate the TOS of our partner platforms like Facebook and others.
  5. You expose our promotional content to your users in innovative ways and generate unique clicks and engagements consistently.
  6. You understand where campaigns are targeted and match users in those regions with those campaigns, rather than show ads to users who are not targeted. Example: If an offer is targeting USA audience, you show that offer to a USA audience with a high frequency.
  7. You take advantage of features like Campaign Transparency, which enables you to deploy multiple agents into one chatbot.
Publishers that abuse our platform will receive a reduced multiplier 😢

8. You never try and defraud our company by using our platform in ways it wasn’t meant to be used. For more on this please visit our documentation page.

The rest is technical stuff, and as we continue to build out our platform and service we’ll be sure to share more and more behaviors and strategies you can employ to raise your Earnings Multiplier.

PS: If you liked this please clap and share it with your friends!

Source: https://chatbotsmagazine.com/earnings-multipliers-how-to-make-10-000-a-month-with-chatbots-a1314c15c684?source=rss—-d6dc2c824f17—4

AI

Using Amazon SageMaker inference pipelines with multi-model endpoints

Businesses are increasingly deploying multiple machine learning (ML) models to serve precise and accurate predictions to their consumers. Consider a media company that wants to provide recommendations to its subscribers. The company may want to employ different custom models for recommending different categories of products—such as movies, books, music, and articles. If the company wants […]

Published

on

Businesses are increasingly deploying multiple machine learning (ML) models to serve precise and accurate predictions to their consumers. Consider a media company that wants to provide recommendations to its subscribers. The company may want to employ different custom models for recommending different categories of products—such as movies, books, music, and articles. If the company wants to add personalization to the recommendations by using individual subscriber information, the number of custom models further increases. Hosting each custom model on a distinct compute instance is not only cost prohibitive, but also leads to underutilization of the hosting resources if not all models are frequently used.

Amazon SageMaker is a fully managed service that enables developers and data scientists to quickly and easily build, train, and deploy ML models at any scale. After you train an ML model, you can deploy it on Amazon SageMaker endpoints that are fully managed and can serve inferences in real time with low latency. Amazon SageMaker multi-model endpoints (MMEs) are a cost-effective solution to deploy a large number of ML models or per-user models. You can deploy multiple models on a single multi-model enabled endpoint such that all models share the compute resources and the serving container. You get significant cost savings and also simplify model deployments and updates. For more information about MME, see Save on inference costs by using Amazon SageMaker multi-model endpoints.

The following diagram depicts how MMEs work.

Multiple model artifacts are persisted in an Amazon S3 bucket. When a specific model is invoked, Amazon SageMaker dynamically loads it onto the container hosting the endpoint. If the model is already loaded in the container’s memory, invocation is faster because Amazon SageMaker doesn’t need to download and load it.

Until now, you could use MME with several frameworks, such as TensorFlow, PyTorch, MXNet, SKLearn, and build your own container with a multi-model server. This post introduces the following feature enhancements to MME:

  • MME support for Amazon SageMaker built-in algorithms – MME is now supported natively in the following popular Amazon SageMaker built-in algorithms: XGBoost, linear learner, RCF, and KNN. You can directly use the Amazon SageMaker provided containers while using these algorithms without having to build your own custom container.
  • MME support for Amazon SageMaker inference pipelines – The Amazon SageMaker inference pipeline model consists of a sequence of containers that serve inference requests by combining preprocessing, predictions, and postprocessing data science tasks. An inference pipeline allows you to reuse the same preprocessing code used during model training to process the inference request data used for predictions. You can now deploy an inference pipeline on an MME where one of the containers in the pipeline can dynamically serve requests based on the model being invoked.
  • IAM condition keys for granular access to models – Prior to this enhancement, an AWS Identity and Access Management (IAM) principal with InvokeEndpoint permission on the endpoint resource could invoke all the models hosted on that endpoint. Now, we support granular access to models using IAM condition keys. For example, the following IAM condition restricts the principal’s access to a model persisted in the Amazon Simple Storage Service (Amazon S3) bucket with company_a or common prefixes:
 Condition": { "StringLike": { "sagemaker:TargetModel": ["company_a/*", "common/*"] } }

We also provide a fully functional notebook to demonstrate these enhancements.

Walkthrough overview

To demonstrate these capabilities, the notebook discusses the use case of predicting house prices in multiple cities using linear regression. House prices are predicted based on features like number of bedrooms, number of garages, square footage, and more. Depending on the city, the features affect the house price differently. For example, small changes in the square footage cause a drastic change in house prices in New York City when compared to price changes in Houston.

For accurate house price predictions, we train multiple linear regression models, with a unique location-specific model per city. Each location-specific model is trained on synthetic housing data with randomly generated characteristics. To cost-effectively serve the multiple housing price prediction models, we deploy the models on a single multi-model enabled endpoint, as shown in the following diagram.

The walkthrough includes the following high-level steps:

  1. Examine the synthetic housing data generated.
  2. Preprocess the raw housing data using Scikit-learn.
  3. Train regression models using the built-in Amazon SageMaker linear learner algorithm.
  4. Create an Amazon SageMaker model with multi-model support.
  5. Create an Amazon SageMaker inference pipeline with an Sklearn model and multi-model enabled linear learner model.
  6. Test the inference pipeline by getting predictions from the different linear learner models.
  7. Update the MME with new models.
  8. Monitor the MME with Amazon CloudWatch
  9. Explore fine-grained access to models hosted on the MME using IAM condition keys.

Other steps necessary to import libraries, set up IAM permissions, and use utility functions are defined in the notebook, which this post doesn’t discuss. You can walk through and run the code with the following notebook on the GitHub repo.

Examining the synthetic housing data

The dataset consists of six numerical features that capture the year the house was built, house size in square feet, number of bedrooms, number of bathrooms, lot size, number of garages, and two categorical features: deck and front porch, indicating whether these are present or not.

To see the raw data, enter the following code:

_houses.head()

The following screenshot shows the results.

You can now preprocess the categorical variables (front_porch and deck) using Scikit-learn.

Preprocessing the raw housing data

To preprocess the raw data, you first create an SKLearn estimator and use the sklearn_preprocessor.py script as the entry_point:

#Create the SKLearn estimator with the sklearn_preprocessor.py as the script
from sagemaker.sklearn.estimator import SKLearn
script_path = 'sklearn_preprocessor.py'
sklearn_preprocessor = SKLearn( entry_point=script_path, role=role, train_instance_type="ml.c4.xlarge", sagemaker_session=sagemaker_session_gamma)

You then launch multiple Scikit-learn training jobs to process the raw synthetic data generated for multiple locations. Before running the following code, take the training instance limits in your account and cost into consideration and adjust the PARALLEL_TRAINING_JOBS value accordingly:

preprocessor_transformers = [] for index, loc in enumerate(LOCATIONS[:PARALLEL_TRAINING_JOBS]): print("preprocessing fit input data at ", index , " for loc ", loc) job_name='scikit-learn-preprocessor-{}'.format(strftime('%Y-%m-%d-%H-%M-%S', gmtime())) sklearn_preprocessor.fit({'train': train_inputs[index]}, job_name=job_name, wait=True) ##Once the preprocessor is fit, use tranformer to preprocess the raw training data and store the transformed data right back into s3. transformer = sklearn_preprocessor.transformer( instance_count=1, instance_type='ml.m4.xlarge', assemble_with='Line', accept='text/csv' ) preprocessor_transformers.append(transformer)

When the preprocessors are properly fitted, preprocess the training data using batch transform to directly preprocess the raw data and store back into Amazon S3:

 preprocessed_train_data_path = [] for index, transformer in enumerate(preprocessor_transformers): transformer.transform(train_inputs[index], content_type='text/csv') print('Launching batch transform job: {}'.format(transformer.latest_transform_job.job_name)) preprocessed_train_data_path.append(transformer.output_path)

Training regression models

In this step, you train multiple models, one for each location.

Start by accessing the built-in linear learner algorithm:

from sagemaker.amazon.amazon_estimator import get_image_uri
container = get_image_uri(boto3.Session().region_name, 'linear-learner')
container

Depending on the Region you’re using, you receive output similar to the following:

	382416733822.dkr.ecr.us-east-1.amazonaws.com/linear-learner:1

Next, define a method to launch a training job for a single location using the Amazon SageMaker Estimator API. In the hyperparameter configuration, you use predictor_type='regressor' to indicate that you’re using the algorithm to train a regression model. See the following code:

def launch_training_job(location, transformer): """Launch a linear learner traing job""" train_inputs = '{}/{}'.format(transformer.output_path, "train.csv") val_inputs = '{}/{}'.format(transformer.output_path, "val.csv") print("train_inputs:", train_inputs) print("val_inputs:", val_inputs) full_output_prefix = '{}/model_artifacts/{}'.format(DATA_PREFIX, location) s3_output_path = 's3://{}/{}'.format(BUCKET, full_output_prefix) print("s3_output_path ", s3_output_path) s3_output_path = 's3://{}/{}/model_artifacts/{}'.format(BUCKET, DATA_PREFIX, location) linear_estimator = sagemaker.estimator.Estimator( container, role, train_instance_count=1, train_instance_type='ml.c4.xlarge', output_path=s3_output_path, sagemaker_session=sagemaker_session) linear_estimator.set_hyperparameters( feature_dim=10, mini_batch_size=100, predictor_type='regressor', epochs=10, num_models=32, loss='absolute_loss') DISTRIBUTION_MODE = 'FullyReplicated' train_input = sagemaker.s3_input(s3_data=train_inputs, distribution=DISTRIBUTION_MODE, content_type='text/csv;label_size=1') val_input = sagemaker.s3_input(s3_data=val_inputs, distribution=DISTRIBUTION_MODE, content_type='text/csv;label_size=1') remote_inputs = {'train': train_input, 'validation': val_input} linear_estimator.fit(remote_inputs, wait=False) return linear_estimator.latest_training_job.name

You can now start multiple model training jobs, one for each location. Make sure to choose the correct value for PARALLEL TRAINING_JOBS, taking your AWS account service limits and cost into consideration. In the notebook, this value is set to 4. See the following code:

training_jobs = []
for transformer, loc in zip(preprocessor_transformers, LOCATIONS[:PARALLEL_TRAINING_JOBS]): job = launch_training_job(loc, transformer) training_jobs.append(job)
print('{} training jobs launched: {}'.format(len(training_jobs), training_jobs))

You receive output similar to the following:

4 training jobs launched: [(<sagemaker.estimator.Estimator object at 0x7fb54784b6d8>, 'linear-learner-2020-06-03-03-51-26-548'), (<sagemaker.estimator.Estimator object at 0x7fb5478b3198>, 'linear-learner-2020-06-03-03-51-26-973'), (<sagemaker.estimator.Estimator object at 0x7fb54780dbe0>, 'linear-learner-2020-06-03-03-51-27-775'), (<sagemaker.estimator.Estimator object at 0x7fb5477664e0>, 'linear-learner-2020-06-03-03-51-31-457')]

Wait until all training jobs are complete before proceeding to the next step.

Creating an Amazon SageMaker model with multi-model support

When the training jobs are complete, you’re ready to create an MME.

First, define a method to copy model artifacts from the training job output to a location in Amazon S3 where the MME dynamically loads individual models:

def deploy_artifacts_to_mme(job_name): print("job_name :", job_name) response = sm_client.describe_training_job(TrainingJobName=job_name) source_s3_key,model_name = parse_model_artifacts(response['ModelArtifacts']['S3ModelArtifacts']) copy_source = {'Bucket': BUCKET, 'Key': source_s3_key} key = '{}/{}/{}/{}.tar.gz'.format(DATA_PREFIX, MULTI_MODEL_ARTIFACTS, model_name, model_name) print('Copying {} modeln from: {}n to: {}...'.format(model_name, source_s3_key, key)) s3_client.copy_object(Bucket=BUCKET, CopySource=copy_source, Key=key)

Copy the model artifacts from all the training jobs to this location:

## Deploy all but the last model trained to MME
for job_name in training_jobs[:-1]: deploy_artifacts_to_mme(job_name)

You receive output similar to the following:

linear-learner-2020-06-03-03-51-26-973
Copying LosAngeles_CA model from: DEMO_MME_LINEAR_LEARNER/model_artifacts/LosAngeles_CA/linear-learner-2020-06-03-03-51-26-973/output/model.tar.gz to: DEMO_MME_LINEAR_LEARNER/multi_model_artifacts/LosAngeles_CA/LosAngeles_CA.tar.gz...
linear-learner-2020-06-03-03-51-27-775
Copying Chicago_IL model from: DEMO_MME_LINEAR_LEARNER/model_artifacts/Chicago_IL/linear-learner-2020-06-03-03-51-27-775/output/model.tar.gz to: DEMO_MME_LINEAR_LEARNER/multi_model_artifacts/Chicago_IL/Chicago_IL.tar.gz...
linear-learner-2020-06-03-03-51-31-457

Create the Amazon SageMaker model entity using the MultiDataModel API:

MODEL_NAME = '{}-{}'.format(HOUSING_MODEL_NAME, strftime('%Y-%m-%d-%H-%M-%S', gmtime())) _model_url = 's3://{}/{}/{}/'.format(BUCKET, DATA_PREFIX, MULTI_MODEL_ARTIFACTS) ll_multi_model = MultiDataModel( name=MODEL_NAME, model_data_prefix=_model_url, image=container, role=role, sagemaker_session=sagemaker

Creating an inference pipeline

Set up an inference pipeline with the PipelineModel API. This sets up a list of models in a single endpoint; for this post, we configure our pipeline model with the fitted Scikit-learn inference model and the fitted MME linear learner model. See the following code:

from sagemaker.model import Model
from sagemaker.pipeline import PipelineModel
import boto3
from time import gmtime, strftime timestamp_prefix = strftime("%Y-%m-%d-%H-%M-%S", gmtime()) scikit_learn_inference_model = sklearn_preprocessor.create_model() model_name = '{}-{}'.format('inference-pipeline', timestamp_prefix)
endpoint_name = '{}-{}'.format('inference-pipeline-ep', timestamp_prefix) sm_model = PipelineModel( name=model_name, role=role, sagemaker_session=sagemaker_session, models=[ scikit_learn_inference_model, ll_multi_model]) sm_model.deploy(initial_instance_count=1, instance_type='ml.m4.xlarge', endpoint_name=endpoint_name)

The MME is now ready to take inference requests and respond with predictions. With the MME, the inference request should include the target model to invoke.

Testing the inference pipeline

You can now get predictions from the different linear learner models. Create a RealTimePredictor with the inference pipeline endpoint:

from sagemaker.predictor import json_serializer, csv_serializer, json_deserializer, RealTimePredictor
from sagemaker.content_types import CONTENT_TYPE_CSV, CONTENT_TYPE_JSON
predictor = RealTimePredictor( endpoint=endpoint_name, sagemaker_session=sagemaker_session, serializer=csv_serializer, content_type=CONTENT_TYPE_CSV, accept=CONTENT_TYPE_JSON)

Define a method to get predictions from the RealTimePredictor:

def predict_one_house_value(features, model_name, predictor_to_use): print('Using model {} to predict price of this house: {}'.format(model_name, features)) body = ','.join(map(str, features)) + 'n' start_time = time.time() response = predictor_to_use.predict(features, target_model=model_name) response_json = json.loads(response) predicted_value = response_json['predictions'][0]['score'] duration = time.time() - start_time print('${:,.2f}, took {:,d} msn'.format(predicted_value, int(duration * 1000)))

With MME, the models are dynamically loaded into the container’s memory of the instance hosting the endpoint when invoked. Therefore, the model invocation may take longer when it’s invoked for the first time. When the model is already in the instance container’s memory, the subsequent invocations are faster. If an instance memory utilization is high and a new model needs to be loaded, unused models are unloaded. The unloaded models remain in the instance’s storage volume and can be loaded into container’s memory later without being downloaded from the S3 bucket again. If the instance’s storage volume is full, unused models are deleted from storage volume.

Amazon SageMaker fully manages the loading and unloading of the models, without you having to take any specific actions. However, it’s important to understand this behavior because it has implications on the model invocation latency.

Iterate through invocations with random inputs against a random model and show the predictions and the time it takes for the prediction to come back:

for i in range(10): model_name = LOCATIONS[np.random.randint(1, len(LOCATIONS[:PARALLEL_TRAINING_JOBS]))] full_model_name = '{}/{}.tar.gz'.format(model_name,model_name) predict_one_house_value(gen_random_house()[1:], full_model_name,runtime_sm_client)

You receive output similar to the following:

Using model Chicago_IL/Chicago_IL.tar.gz to predict price of this house: [1993, 2728, 6, 3.0, 0.7, 1, 'y', 'y']
$439,972.62, took 1,166 ms Using model Houston_TX/Houston_TX.tar.gz to predict price of this house: [1989, 1944, 5, 3.0, 1.0, 1, 'n', 'y']
$280,848.00, took 1,086 ms Using model LosAngeles_CA/LosAngeles_CA.tar.gz to predict price of this house: [1968, 2427, 4, 3.0, 1.0, 2, 'y', 'n']
$266,721.31, took 1,029 ms Using model Chicago_IL/Chicago_IL.tar.gz to predict price of this house: [2000, 4024, 2, 1.0, 0.82, 1, 'y', 'y']
$584,069.88, took 53 ms Using model LosAngeles_CA/LosAngeles_CA.tar.gz to predict price of this house: [1986, 3463, 5, 3.0, 0.9, 1, 'y', 'n']
$496,340.19, took 43 ms Using model Chicago_IL/Chicago_IL.tar.gz to predict price of this house: [2002, 3885, 4, 3.0, 1.16, 2, 'n', 'n']
$626,904.12, took 39 ms Using model Chicago_IL/Chicago_IL.tar.gz to predict price of this house: [1992, 1531, 6, 3.0, 0.68, 1, 'y', 'n']
$257,696.17, took 36 ms Using model Chicago_IL/Chicago_IL.tar.gz to predict price of this house: [1992, 2327, 2, 3.0, 0.59, 3, 'n', 'n']
$337,758.22, took 33 ms Using model LosAngeles_CA/LosAngeles_CA.tar.gz to predict price of this house: [1995, 2656, 5, 1.0, 1.16, 0, 'y', 'n']
$390,652.59, took 35 ms Using model LosAngeles_CA/LosAngeles_CA.tar.gz to predict price of this house: [2000, 4086, 2, 3.0, 1.03, 3, 'n', 'y']
$632,995.44, took 35 ms

The output that shows the predicted house price and the time it took for the prediction.

You should consider two different invocations of the same model. The second time, you don’t need to download from Amazon S3 because they’re already present on the instance. You see the inferences return in less time than before. For this use case, the invocation time for the Chicago_IL/Chicago_IL.tar.gz model reduced from 1,166 milliseconds the first time to 53 milliseconds the second time. Similarly, the invocation time for the LosAngeles_CA /LosAngeles_CA.tar.gz model reduced from 1,029 milliseconds to 43 milliseconds.

Updating an MME with new models

To deploy a new model to an existing MME, copy a new set of model artifacts to the same Amazon S3 location you set up earlier. For example, copy the model for the Houston location with the following code:

## Copy the last model
last_training_job=training_jobs[PARALLEL_TRAINING_JOBS-1]
deploy_artifacts_to_mme(last_training_job)

Now you can make predictions using the last model. See the following code:

model_name = LOCATIONS[PARALLEL_TRAINING_JOBS-1]
full_model_name = '{}/{}.tar.gz'.format(model_name,model_name)
predict_one_house_value(gen_random_house()[:-1], full_model_name,predictor)

Monitoring MMEs with CloudWatch metrics

Amazon SageMaker provides CloudWatch metrics for MMEs so you can determine the endpoint usage and the cache hit rate and optimize your endpoint. To analyze the endpoint and the container behavior, you invoke multiple models in this sequence:

##Create 200 copies of the original model and save with different names.
copy_additional_artifacts_to_mme(200)
##Starting with no models loaded into the container
##Invoke the first 100 models
invoke_multiple_models_mme(0,100)
##Invoke the same 100 models again
invoke_multiple_models_mme(0,100)
##This time invoke all 200 models to observe behavior
invoke_multiple_models_mme(0,200)

The following chart shows the behavior of the CloudWatch metrics LoadedModelCount and MemoryUtilization corresponding to these model invocations.

The LoadedModelCount metric continuously increases as more models are invoked, until it levels off at 121. The MemoryUtilization metric of the container also increased correspondingly to around 79%. This shows that the instance chosen to host the endpoint could only maintain 121 models in memory when 200 model invocations were made.

The following chart adds the ModelCacheHit metric to the previous two.

As the number of models loaded to the container memory increase, the ModelCacheHit metric improves. When the same 100 models are invoked the second time, ModelCacheHit reaches 1. When new models not yet loaded are invoked, ModelCacheHit decreases again.

You can use CloudWatch charts to help make ongoing decisions on the optimal choice of instance type, instance count, and number of models that a given endpoint should host.

Exploring granular access to models hosted on an MME

Because of the role attached to the notebook instance, it can invoke all models hosted on the MME. However, you can restrict this model invocation access to specific models by using IAM condition keys. To explore this, you create a new IAM role and IAM policy with a condition key to restrict access to a single model. You then assume this new role and verify that only a single target model can be invoked.

The role assigned to the Amazon SageMaker notebook instance should allow IAM role and IAM policy creation for the next steps to be successful.

Create an IAM role with the following code:

#Create a new role that can be assumed by this notebook. The roles should allow access to only a single model.
path='/'
role_name="{}{}".format('allow_invoke_ny_model_role', strftime('%Y-%m-%d-%H-%M-%S', gmtime()))
description='Role that allows invoking a single model'
action_string = "sts:AssumeRole"
trust_policy={ "Version": "2012-10-17", "Statement": [ { "Sid": "statement1", "Effect": "Allow", "Principal": { "AWS": role }, "Action": "sts:AssumeRole" } ] } response = iam_client.create_role( Path=path, RoleName=role_name, AssumeRolePolicyDocument=json.dumps(trust_policy), Description=description, MaxSessionDuration=3600
) print(response)

Create an IAM policy with a condition key to restrict access to only the NewYork model:

managed_policy = { "Version": "2012-10-17", "Statement": [ { "Sid": "SageMakerAccess", "Action": "sagemaker:InvokeEndpoint", "Effect": "Allow", "Resource":endpoint_resource_arn, "Condition": { "StringLike": { "sagemaker:TargetModel": ["NewYork_NY/*"] } } } ]
}
response = iam_client.create_policy( PolicyName='allow_invoke_ny_model_policy', PolicyDocument=json.dumps(managed_policy)
)

Attach the IAM policy to the IAM role:

iam_client.attach_role_policy( PolicyArn=policy_arn, RoleName=role_name
)

Assume the new role and create a RealTimePredictor object runtime client:

## Invoke with the role that has access to only NY model
sts_connection = boto3.client('sts')
assumed_role_limited_access = sts_connection.assume_role( RoleArn=role_arn, RoleSessionName="MME_Invoke_NY_Model"
)
assumed_role_limited_access['AssumedRoleUser']['Arn'] #Create sagemaker runtime client with assumed role
ACCESS_KEY = assumed_role_limited_access['Credentials']['AccessKeyId']
SECRET_KEY = assumed_role_limited_access['Credentials']['SecretAccessKey']
SESSION_TOKEN = assumed_role_limited_access['Credentials']['SessionToken'] runtime_sm_client_with_assumed_role = boto3.client( service_name='sagemaker-runtime', aws_access_key_id=ACCESS_KEY, aws_secret_access_key=SECRET_KEY, aws_session_token=SESSION_TOKEN,
) #SageMaker session with the assumed role
sagemakerSessionAssumedRole = sagemaker.Session(sagemaker_runtime_client=runtime_sm_client_with_assumed_role)
#Create a RealTimePredictor with the assumed role.
predictorAssumedRole = RealTimePredictor( endpoint=endpoint_name, sagemaker_session=sagemakerSessionAssumedRole, serializer=csv_serializer, content_type=CONTENT_TYPE_CSV, accept=CONTENT_TYPE_JSON)

Now invoke the NewYork_NY model:

full_model_name = 'NewYork_NY/NewYork_NY.tar.gz'
predict_one_house_value(gen_random_house()[:-1], full_model_name, predictorAssumedRole) 

You receive output similar to the following:

Using model NewYork_NY/NewYork_NY.tar.gz to predict price of this house: [1992, 1659, 2, 2.0, 0.87, 2, 'n', 'y']
$222,008.38, took 154 ms

Next, try to invoke a different model (Chicago_IL/Chicago_IL.tar.gz). This should throw an error because the assumed role isn’t authorized to invoke this model. See the following code:

full_model_name = 'Chicago_IL/Chicago_IL.tar.gz' predict_one_house_value(gen_random_house()[:-1], full_model_name,predictorAssumedRole) 

You receive output similar to the following:

ClientError: An error occurred (AccessDeniedException) when calling the InvokeEndpoint operation: User: arn:aws:sts::xxxxxxxxxxxx:assumed-role/allow_invoke_ny_model_role/MME_Invoke_NY_Model is not authorized to perform: sagemaker:InvokeEndpoint on resource: arn:aws:sagemaker:us-east-1:xxxxxxxxxxxx:endpoint/inference-pipeline-ep-2020-07-01-15-46-51

Conclusion

Amazon SageMaker MMEs are a very powerful tool for teams developing multiple ML models to save significant costs and lower deployment overhead for a large number of ML models. This post discussed the new capabilities of Amazon SageMaker MMEs: native integration with Amazon SageMaker built-in algorithms (such as linear learner and KNN), native integration with inference pipelines, and fine-grained controlled access to the multiple models hosted on a single endpoint using IAM condition keys.

The notebook included with the post provided detailed instructions on training multiple linear learner models for house price predictions for multiple locations, hosting all the models on a single MME, and controlling access to the individual models.When considering multi-model enabled endpoints, you should balance the cost savings and the latency requirements.

Give Amazon SageMaker MMEs a try and leave your feedback in the comments.


About the Author

Sireesha Muppala is a AI/ML Specialist Solutions Architect at AWS, providing guidance to customers on architecting and implementing machine learning solutions at scale. She received her Ph.D. in Computer Science from University of Colorado, Colorado Springs. In her spare time, Sireesha loves to run and hike Colorado trails.

Michael Pham is a Software Development Engineer in the Amazon SageMaker team. His current work focuses on helping developers efficiently host machine learning models. In his spare time he enjoys Olympic weightlifting, reading, and playing chess.

Source: https://aws.amazon.com/blogs/machine-learning/using-amazon-sagemaker-inference-pipelines-with-multi-model-endpoints/

Continue Reading

AI

Using Amazon SageMaker inference pipelines with multi-model endpoints

Businesses are increasingly deploying multiple machine learning (ML) models to serve precise and accurate predictions to their consumers. Consider a media company that wants to provide recommendations to its subscribers. The company may want to employ different custom models for recommending different categories of products—such as movies, books, music, and articles. If the company wants […]

Published

on

Businesses are increasingly deploying multiple machine learning (ML) models to serve precise and accurate predictions to their consumers. Consider a media company that wants to provide recommendations to its subscribers. The company may want to employ different custom models for recommending different categories of products—such as movies, books, music, and articles. If the company wants to add personalization to the recommendations by using individual subscriber information, the number of custom models further increases. Hosting each custom model on a distinct compute instance is not only cost prohibitive, but also leads to underutilization of the hosting resources if not all models are frequently used.

Amazon SageMaker is a fully managed service that enables developers and data scientists to quickly and easily build, train, and deploy ML models at any scale. After you train an ML model, you can deploy it on Amazon SageMaker endpoints that are fully managed and can serve inferences in real time with low latency. Amazon SageMaker multi-model endpoints (MMEs) are a cost-effective solution to deploy a large number of ML models or per-user models. You can deploy multiple models on a single multi-model enabled endpoint such that all models share the compute resources and the serving container. You get significant cost savings and also simplify model deployments and updates. For more information about MME, see Save on inference costs by using Amazon SageMaker multi-model endpoints.

The following diagram depicts how MMEs work.

Multiple model artifacts are persisted in an Amazon S3 bucket. When a specific model is invoked, Amazon SageMaker dynamically loads it onto the container hosting the endpoint. If the model is already loaded in the container’s memory, invocation is faster because Amazon SageMaker doesn’t need to download and load it.

Until now, you could use MME with several frameworks, such as TensorFlow, PyTorch, MXNet, SKLearn, and build your own container with a multi-model server. This post introduces the following feature enhancements to MME:

  • MME support for Amazon SageMaker built-in algorithms – MME is now supported natively in the following popular Amazon SageMaker built-in algorithms: XGBoost, linear learner, RCF, and KNN. You can directly use the Amazon SageMaker provided containers while using these algorithms without having to build your own custom container.
  • MME support for Amazon SageMaker inference pipelines – The Amazon SageMaker inference pipeline model consists of a sequence of containers that serve inference requests by combining preprocessing, predictions, and postprocessing data science tasks. An inference pipeline allows you to reuse the same preprocessing code used during model training to process the inference request data used for predictions. You can now deploy an inference pipeline on an MME where one of the containers in the pipeline can dynamically serve requests based on the model being invoked.
  • IAM condition keys for granular access to models – Prior to this enhancement, an AWS Identity and Access Management (IAM) principal with InvokeEndpoint permission on the endpoint resource could invoke all the models hosted on that endpoint. Now, we support granular access to models using IAM condition keys. For example, the following IAM condition restricts the principal’s access to a model persisted in the Amazon Simple Storage Service (Amazon S3) bucket with company_a or common prefixes:
 Condition": { "StringLike": { "sagemaker:TargetModel": ["company_a/*", "common/*"] } }

We also provide a fully functional notebook to demonstrate these enhancements.

Walkthrough overview

To demonstrate these capabilities, the notebook discusses the use case of predicting house prices in multiple cities using linear regression. House prices are predicted based on features like number of bedrooms, number of garages, square footage, and more. Depending on the city, the features affect the house price differently. For example, small changes in the square footage cause a drastic change in house prices in New York City when compared to price changes in Houston.

For accurate house price predictions, we train multiple linear regression models, with a unique location-specific model per city. Each location-specific model is trained on synthetic housing data with randomly generated characteristics. To cost-effectively serve the multiple housing price prediction models, we deploy the models on a single multi-model enabled endpoint, as shown in the following diagram.

The walkthrough includes the following high-level steps:

  1. Examine the synthetic housing data generated.
  2. Preprocess the raw housing data using Scikit-learn.
  3. Train regression models using the built-in Amazon SageMaker linear learner algorithm.
  4. Create an Amazon SageMaker model with multi-model support.
  5. Create an Amazon SageMaker inference pipeline with an Sklearn model and multi-model enabled linear learner model.
  6. Test the inference pipeline by getting predictions from the different linear learner models.
  7. Update the MME with new models.
  8. Monitor the MME with Amazon CloudWatch
  9. Explore fine-grained access to models hosted on the MME using IAM condition keys.

Other steps necessary to import libraries, set up IAM permissions, and use utility functions are defined in the notebook, which this post doesn’t discuss. You can walk through and run the code with the following notebook on the GitHub repo.

Examining the synthetic housing data

The dataset consists of six numerical features that capture the year the house was built, house size in square feet, number of bedrooms, number of bathrooms, lot size, number of garages, and two categorical features: deck and front porch, indicating whether these are present or not.

To see the raw data, enter the following code:

_houses.head()

The following screenshot shows the results.

You can now preprocess the categorical variables (front_porch and deck) using Scikit-learn.

Preprocessing the raw housing data

To preprocess the raw data, you first create an SKLearn estimator and use the sklearn_preprocessor.py script as the entry_point:

#Create the SKLearn estimator with the sklearn_preprocessor.py as the script
from sagemaker.sklearn.estimator import SKLearn
script_path = 'sklearn_preprocessor.py'
sklearn_preprocessor = SKLearn( entry_point=script_path, role=role, train_instance_type="ml.c4.xlarge", sagemaker_session=sagemaker_session_gamma)

You then launch multiple Scikit-learn training jobs to process the raw synthetic data generated for multiple locations. Before running the following code, take the training instance limits in your account and cost into consideration and adjust the PARALLEL_TRAINING_JOBS value accordingly:

preprocessor_transformers = [] for index, loc in enumerate(LOCATIONS[:PARALLEL_TRAINING_JOBS]): print("preprocessing fit input data at ", index , " for loc ", loc) job_name='scikit-learn-preprocessor-{}'.format(strftime('%Y-%m-%d-%H-%M-%S', gmtime())) sklearn_preprocessor.fit({'train': train_inputs[index]}, job_name=job_name, wait=True) ##Once the preprocessor is fit, use tranformer to preprocess the raw training data and store the transformed data right back into s3. transformer = sklearn_preprocessor.transformer( instance_count=1, instance_type='ml.m4.xlarge', assemble_with='Line', accept='text/csv' ) preprocessor_transformers.append(transformer)

When the preprocessors are properly fitted, preprocess the training data using batch transform to directly preprocess the raw data and store back into Amazon S3:

 preprocessed_train_data_path = [] for index, transformer in enumerate(preprocessor_transformers): transformer.transform(train_inputs[index], content_type='text/csv') print('Launching batch transform job: {}'.format(transformer.latest_transform_job.job_name)) preprocessed_train_data_path.append(transformer.output_path)

Training regression models

In this step, you train multiple models, one for each location.

Start by accessing the built-in linear learner algorithm:

from sagemaker.amazon.amazon_estimator import get_image_uri
container = get_image_uri(boto3.Session().region_name, 'linear-learner')
container

Depending on the Region you’re using, you receive output similar to the following:

	382416733822.dkr.ecr.us-east-1.amazonaws.com/linear-learner:1

Next, define a method to launch a training job for a single location using the Amazon SageMaker Estimator API. In the hyperparameter configuration, you use predictor_type='regressor' to indicate that you’re using the algorithm to train a regression model. See the following code:

def launch_training_job(location, transformer): """Launch a linear learner traing job""" train_inputs = '{}/{}'.format(transformer.output_path, "train.csv") val_inputs = '{}/{}'.format(transformer.output_path, "val.csv") print("train_inputs:", train_inputs) print("val_inputs:", val_inputs) full_output_prefix = '{}/model_artifacts/{}'.format(DATA_PREFIX, location) s3_output_path = 's3://{}/{}'.format(BUCKET, full_output_prefix) print("s3_output_path ", s3_output_path) s3_output_path = 's3://{}/{}/model_artifacts/{}'.format(BUCKET, DATA_PREFIX, location) linear_estimator = sagemaker.estimator.Estimator( container, role, train_instance_count=1, train_instance_type='ml.c4.xlarge', output_path=s3_output_path, sagemaker_session=sagemaker_session) linear_estimator.set_hyperparameters( feature_dim=10, mini_batch_size=100, predictor_type='regressor', epochs=10, num_models=32, loss='absolute_loss') DISTRIBUTION_MODE = 'FullyReplicated' train_input = sagemaker.s3_input(s3_data=train_inputs, distribution=DISTRIBUTION_MODE, content_type='text/csv;label_size=1') val_input = sagemaker.s3_input(s3_data=val_inputs, distribution=DISTRIBUTION_MODE, content_type='text/csv;label_size=1') remote_inputs = {'train': train_input, 'validation': val_input} linear_estimator.fit(remote_inputs, wait=False) return linear_estimator.latest_training_job.name

You can now start multiple model training jobs, one for each location. Make sure to choose the correct value for PARALLEL TRAINING_JOBS, taking your AWS account service limits and cost into consideration. In the notebook, this value is set to 4. See the following code:

training_jobs = []
for transformer, loc in zip(preprocessor_transformers, LOCATIONS[:PARALLEL_TRAINING_JOBS]): job = launch_training_job(loc, transformer) training_jobs.append(job)
print('{} training jobs launched: {}'.format(len(training_jobs), training_jobs))

You receive output similar to the following:

4 training jobs launched: [(<sagemaker.estimator.Estimator object at 0x7fb54784b6d8>, 'linear-learner-2020-06-03-03-51-26-548'), (<sagemaker.estimator.Estimator object at 0x7fb5478b3198>, 'linear-learner-2020-06-03-03-51-26-973'), (<sagemaker.estimator.Estimator object at 0x7fb54780dbe0>, 'linear-learner-2020-06-03-03-51-27-775'), (<sagemaker.estimator.Estimator object at 0x7fb5477664e0>, 'linear-learner-2020-06-03-03-51-31-457')]

Wait until all training jobs are complete before proceeding to the next step.

Creating an Amazon SageMaker model with multi-model support

When the training jobs are complete, you’re ready to create an MME.

First, define a method to copy model artifacts from the training job output to a location in Amazon S3 where the MME dynamically loads individual models:

def deploy_artifacts_to_mme(job_name): print("job_name :", job_name) response = sm_client.describe_training_job(TrainingJobName=job_name) source_s3_key,model_name = parse_model_artifacts(response['ModelArtifacts']['S3ModelArtifacts']) copy_source = {'Bucket': BUCKET, 'Key': source_s3_key} key = '{}/{}/{}/{}.tar.gz'.format(DATA_PREFIX, MULTI_MODEL_ARTIFACTS, model_name, model_name) print('Copying {} model\n from: {}\n to: {}...'.format(model_name, source_s3_key, key)) s3_client.copy_object(Bucket=BUCKET, CopySource=copy_source, Key=key)

Copy the model artifacts from all the training jobs to this location:

## Deploy all but the last model trained to MME
for job_name in training_jobs[:-1]: deploy_artifacts_to_mme(job_name)

You receive output similar to the following:

linear-learner-2020-06-03-03-51-26-973
Copying LosAngeles_CA model from: DEMO_MME_LINEAR_LEARNER/model_artifacts/LosAngeles_CA/linear-learner-2020-06-03-03-51-26-973/output/model.tar.gz to: DEMO_MME_LINEAR_LEARNER/multi_model_artifacts/LosAngeles_CA/LosAngeles_CA.tar.gz...
linear-learner-2020-06-03-03-51-27-775
Copying Chicago_IL model from: DEMO_MME_LINEAR_LEARNER/model_artifacts/Chicago_IL/linear-learner-2020-06-03-03-51-27-775/output/model.tar.gz to: DEMO_MME_LINEAR_LEARNER/multi_model_artifacts/Chicago_IL/Chicago_IL.tar.gz...
linear-learner-2020-06-03-03-51-31-457

Create the Amazon SageMaker model entity using the MultiDataModel API:

MODEL_NAME = '{}-{}'.format(HOUSING_MODEL_NAME, strftime('%Y-%m-%d-%H-%M-%S', gmtime())) _model_url = 's3://{}/{}/{}/'.format(BUCKET, DATA_PREFIX, MULTI_MODEL_ARTIFACTS) ll_multi_model = MultiDataModel( name=MODEL_NAME, model_data_prefix=_model_url, image=container, role=role, sagemaker_session=sagemaker

Creating an inference pipeline

Set up an inference pipeline with the PipelineModel API. This sets up a list of models in a single endpoint; for this post, we configure our pipeline model with the fitted Scikit-learn inference model and the fitted MME linear learner model. See the following code:

from sagemaker.model import Model
from sagemaker.pipeline import PipelineModel
import boto3
from time import gmtime, strftime timestamp_prefix = strftime("%Y-%m-%d-%H-%M-%S", gmtime()) scikit_learn_inference_model = sklearn_preprocessor.create_model() model_name = '{}-{}'.format('inference-pipeline', timestamp_prefix)
endpoint_name = '{}-{}'.format('inference-pipeline-ep', timestamp_prefix) sm_model = PipelineModel( name=model_name, role=role, sagemaker_session=sagemaker_session, models=[ scikit_learn_inference_model, ll_multi_model]) sm_model.deploy(initial_instance_count=1, instance_type='ml.m4.xlarge', endpoint_name=endpoint_name)

The MME is now ready to take inference requests and respond with predictions. With the MME, the inference request should include the target model to invoke.

Testing the inference pipeline

You can now get predictions from the different linear learner models. Create a RealTimePredictor with the inference pipeline endpoint:

from sagemaker.predictor import json_serializer, csv_serializer, json_deserializer, RealTimePredictor
from sagemaker.content_types import CONTENT_TYPE_CSV, CONTENT_TYPE_JSON
predictor = RealTimePredictor( endpoint=endpoint_name, sagemaker_session=sagemaker_session, serializer=csv_serializer, content_type=CONTENT_TYPE_CSV, accept=CONTENT_TYPE_JSON)

Define a method to get predictions from the RealTimePredictor:

def predict_one_house_value(features, model_name, predictor_to_use): print('Using model {} to predict price of this house: {}'.format(model_name, features)) body = ','.join(map(str, features)) + '\n' start_time = time.time() response = predictor_to_use.predict(features, target_model=model_name) response_json = json.loads(response) predicted_value = response_json['predictions'][0]['score'] duration = time.time() - start_time print('${:,.2f}, took {:,d} ms\n'.format(predicted_value, int(duration * 1000)))

With MME, the models are dynamically loaded into the container’s memory of the instance hosting the endpoint when invoked. Therefore, the model invocation may take longer when it’s invoked for the first time. When the model is already in the instance container’s memory, the subsequent invocations are faster. If an instance memory utilization is high and a new model needs to be loaded, unused models are unloaded. The unloaded models remain in the instance’s storage volume and can be loaded into container’s memory later without being downloaded from the S3 bucket again. If the instance’s storage volume is full, unused models are deleted from storage volume.

Amazon SageMaker fully manages the loading and unloading of the models, without you having to take any specific actions. However, it’s important to understand this behavior because it has implications on the model invocation latency.

Iterate through invocations with random inputs against a random model and show the predictions and the time it takes for the prediction to come back:

for i in range(10): model_name = LOCATIONS[np.random.randint(1, len(LOCATIONS[:PARALLEL_TRAINING_JOBS]))] full_model_name = '{}/{}.tar.gz'.format(model_name,model_name) predict_one_house_value(gen_random_house()[1:], full_model_name,runtime_sm_client)

You receive output similar to the following:

Using model Chicago_IL/Chicago_IL.tar.gz to predict price of this house: [1993, 2728, 6, 3.0, 0.7, 1, 'y', 'y']
$439,972.62, took 1,166 ms Using model Houston_TX/Houston_TX.tar.gz to predict price of this house: [1989, 1944, 5, 3.0, 1.0, 1, 'n', 'y']
$280,848.00, took 1,086 ms Using model LosAngeles_CA/LosAngeles_CA.tar.gz to predict price of this house: [1968, 2427, 4, 3.0, 1.0, 2, 'y', 'n']
$266,721.31, took 1,029 ms Using model Chicago_IL/Chicago_IL.tar.gz to predict price of this house: [2000, 4024, 2, 1.0, 0.82, 1, 'y', 'y']
$584,069.88, took 53 ms Using model LosAngeles_CA/LosAngeles_CA.tar.gz to predict price of this house: [1986, 3463, 5, 3.0, 0.9, 1, 'y', 'n']
$496,340.19, took 43 ms Using model Chicago_IL/Chicago_IL.tar.gz to predict price of this house: [2002, 3885, 4, 3.0, 1.16, 2, 'n', 'n']
$626,904.12, took 39 ms Using model Chicago_IL/Chicago_IL.tar.gz to predict price of this house: [1992, 1531, 6, 3.0, 0.68, 1, 'y', 'n']
$257,696.17, took 36 ms Using model Chicago_IL/Chicago_IL.tar.gz to predict price of this house: [1992, 2327, 2, 3.0, 0.59, 3, 'n', 'n']
$337,758.22, took 33 ms Using model LosAngeles_CA/LosAngeles_CA.tar.gz to predict price of this house: [1995, 2656, 5, 1.0, 1.16, 0, 'y', 'n']
$390,652.59, took 35 ms Using model LosAngeles_CA/LosAngeles_CA.tar.gz to predict price of this house: [2000, 4086, 2, 3.0, 1.03, 3, 'n', 'y']
$632,995.44, took 35 ms

The output that shows the predicted house price and the time it took for the prediction.

You should consider two different invocations of the same model. The second time, you don’t need to download from Amazon S3 because they’re already present on the instance. You see the inferences return in less time than before. For this use case, the invocation time for the Chicago_IL/Chicago_IL.tar.gz model reduced from 1,166 milliseconds the first time to 53 milliseconds the second time. Similarly, the invocation time for the LosAngeles_CA /LosAngeles_CA.tar.gz model reduced from 1,029 milliseconds to 43 milliseconds.

Updating an MME with new models

To deploy a new model to an existing MME, copy a new set of model artifacts to the same Amazon S3 location you set up earlier. For example, copy the model for the Houston location with the following code:

## Copy the last model
last_training_job=training_jobs[PARALLEL_TRAINING_JOBS-1]
deploy_artifacts_to_mme(last_training_job)

Now you can make predictions using the last model. See the following code:

model_name = LOCATIONS[PARALLEL_TRAINING_JOBS-1]
full_model_name = '{}/{}.tar.gz'.format(model_name,model_name)
predict_one_house_value(gen_random_house()[:-1], full_model_name,predictor)

Monitoring MMEs with CloudWatch metrics

Amazon SageMaker provides CloudWatch metrics for MMEs so you can determine the endpoint usage and the cache hit rate and optimize your endpoint. To analyze the endpoint and the container behavior, you invoke multiple models in this sequence:

##Create 200 copies of the original model and save with different names.
copy_additional_artifacts_to_mme(200)
##Starting with no models loaded into the container
##Invoke the first 100 models
invoke_multiple_models_mme(0,100)
##Invoke the same 100 models again
invoke_multiple_models_mme(0,100)
##This time invoke all 200 models to observe behavior
invoke_multiple_models_mme(0,200)

The following chart shows the behavior of the CloudWatch metrics LoadedModelCount and MemoryUtilization corresponding to these model invocations.

The LoadedModelCount metric continuously increases as more models are invoked, until it levels off at 121. The MemoryUtilization metric of the container also increased correspondingly to around 79%. This shows that the instance chosen to host the endpoint could only maintain 121 models in memory when 200 model invocations were made.

The following chart adds the ModelCacheHit metric to the previous two.

As the number of models loaded to the container memory increase, the ModelCacheHit metric improves. When the same 100 models are invoked the second time, ModelCacheHit reaches 1. When new models not yet loaded are invoked, ModelCacheHit decreases again.

You can use CloudWatch charts to help make ongoing decisions on the optimal choice of instance type, instance count, and number of models that a given endpoint should host.

Exploring granular access to models hosted on an MME

Because of the role attached to the notebook instance, it can invoke all models hosted on the MME. However, you can restrict this model invocation access to specific models by using IAM condition keys. To explore this, you create a new IAM role and IAM policy with a condition key to restrict access to a single model. You then assume this new role and verify that only a single target model can be invoked.

The role assigned to the Amazon SageMaker notebook instance should allow IAM role and IAM policy creation for the next steps to be successful.

Create an IAM role with the following code:

#Create a new role that can be assumed by this notebook. The roles should allow access to only a single model.
path='/'
role_name="{}{}".format('allow_invoke_ny_model_role', strftime('%Y-%m-%d-%H-%M-%S', gmtime()))
description='Role that allows invoking a single model'
action_string = "sts:AssumeRole"
trust_policy={ "Version": "2012-10-17", "Statement": [ { "Sid": "statement1", "Effect": "Allow", "Principal": { "AWS": role }, "Action": "sts:AssumeRole" } ] } response = iam_client.create_role( Path=path, RoleName=role_name, AssumeRolePolicyDocument=json.dumps(trust_policy), Description=description, MaxSessionDuration=3600
) print(response)

Create an IAM policy with a condition key to restrict access to only the NewYork model:

managed_policy = { "Version": "2012-10-17", "Statement": [ { "Sid": "SageMakerAccess", "Action": "sagemaker:InvokeEndpoint", "Effect": "Allow", "Resource":endpoint_resource_arn, "Condition": { "StringLike": { "sagemaker:TargetModel": ["NewYork_NY/*"] } } } ]
}
response = iam_client.create_policy( PolicyName='allow_invoke_ny_model_policy', PolicyDocument=json.dumps(managed_policy)
)

Attach the IAM policy to the IAM role:

iam_client.attach_role_policy( PolicyArn=policy_arn, RoleName=role_name
)

Assume the new role and create a RealTimePredictor object runtime client:

## Invoke with the role that has access to only NY model
sts_connection = boto3.client('sts')
assumed_role_limited_access = sts_connection.assume_role( RoleArn=role_arn, RoleSessionName="MME_Invoke_NY_Model"
)
assumed_role_limited_access['AssumedRoleUser']['Arn'] #Create sagemaker runtime client with assumed role
ACCESS_KEY = assumed_role_limited_access['Credentials']['AccessKeyId']
SECRET_KEY = assumed_role_limited_access['Credentials']['SecretAccessKey']
SESSION_TOKEN = assumed_role_limited_access['Credentials']['SessionToken'] runtime_sm_client_with_assumed_role = boto3.client( service_name='sagemaker-runtime', aws_access_key_id=ACCESS_KEY, aws_secret_access_key=SECRET_KEY, aws_session_token=SESSION_TOKEN,
) #SageMaker session with the assumed role
sagemakerSessionAssumedRole = sagemaker.Session(sagemaker_runtime_client=runtime_sm_client_with_assumed_role)
#Create a RealTimePredictor with the assumed role.
predictorAssumedRole = RealTimePredictor( endpoint=endpoint_name, sagemaker_session=sagemakerSessionAssumedRole, serializer=csv_serializer, content_type=CONTENT_TYPE_CSV, accept=CONTENT_TYPE_JSON)

Now invoke the NewYork_NY model:

full_model_name = 'NewYork_NY/NewYork_NY.tar.gz'
predict_one_house_value(gen_random_house()[:-1], full_model_name, predictorAssumedRole) 

You receive output similar to the following:

Using model NewYork_NY/NewYork_NY.tar.gz to predict price of this house: [1992, 1659, 2, 2.0, 0.87, 2, 'n', 'y']
$222,008.38, took 154 ms

Next, try to invoke a different model (Chicago_IL/Chicago_IL.tar.gz). This should throw an error because the assumed role isn’t authorized to invoke this model. See the following code:

full_model_name = 'Chicago_IL/Chicago_IL.tar.gz' predict_one_house_value(gen_random_house()[:-1], full_model_name,predictorAssumedRole) 

You receive output similar to the following:

ClientError: An error occurred (AccessDeniedException) when calling the InvokeEndpoint operation: User: arn:aws:sts::xxxxxxxxxxxx:assumed-role/allow_invoke_ny_model_role/MME_Invoke_NY_Model is not authorized to perform: sagemaker:InvokeEndpoint on resource: arn:aws:sagemaker:us-east-1:xxxxxxxxxxxx:endpoint/inference-pipeline-ep-2020-07-01-15-46-51

Conclusion

Amazon SageMaker MMEs are a very powerful tool for teams developing multiple ML models to save significant costs and lower deployment overhead for a large number of ML models. This post discussed the new capabilities of Amazon SageMaker MMEs: native integration with Amazon SageMaker built-in algorithms (such as linear learner and KNN), native integration with inference pipelines, and fine-grained controlled access to the multiple models hosted on a single endpoint using IAM condition keys.

The notebook included with the post provided detailed instructions on training multiple linear learner models for house price predictions for multiple locations, hosting all the models on a single MME, and controlling access to the individual models.When considering multi-model enabled endpoints, you should balance the cost savings and the latency requirements.

Give Amazon SageMaker MMEs a try and leave your feedback in the comments.


About the Author

Sireesha Muppala is a AI/ML Specialist Solutions Architect at AWS, providing guidance to customers on architecting and implementing machine learning solutions at scale. She received her Ph.D. in Computer Science from University of Colorado, Colorado Springs. In her spare time, Sireesha loves to run and hike Colorado trails.

Michael Pham is a Software Development Engineer in the Amazon SageMaker team. His current work focuses on helping developers efficiently host machine learning models. In his spare time he enjoys Olympic weightlifting, reading, and playing chess.

Source: https://aws.amazon.com/blogs/machine-learning/using-amazon-sagemaker-inference-pipelines-with-multi-model-endpoints/

Continue Reading

AI

Using Amazon SageMaker inference pipelines with multi-model endpoints

Businesses are increasingly deploying multiple machine learning (ML) models to serve precise and accurate predictions to their consumers. Consider a media company that wants to provide recommendations to its subscribers. The company may want to employ different custom models for recommending different categories of products—such as movies, books, music, and articles. If the company wants […]

Published

on

Businesses are increasingly deploying multiple machine learning (ML) models to serve precise and accurate predictions to their consumers. Consider a media company that wants to provide recommendations to its subscribers. The company may want to employ different custom models for recommending different categories of products—such as movies, books, music, and articles. If the company wants to add personalization to the recommendations by using individual subscriber information, the number of custom models further increases. Hosting each custom model on a distinct compute instance is not only cost prohibitive, but also leads to underutilization of the hosting resources if not all models are frequently used.

Amazon SageMaker is a fully managed service that enables developers and data scientists to quickly and easily build, train, and deploy ML models at any scale. After you train an ML model, you can deploy it on Amazon SageMaker endpoints that are fully managed and can serve inferences in real time with low latency. Amazon SageMaker multi-model endpoints (MMEs) are a cost-effective solution to deploy a large number of ML models or per-user models. You can deploy multiple models on a single multi-model enabled endpoint such that all models share the compute resources and the serving container. You get significant cost savings and also simplify model deployments and updates. For more information about MME, see Save on inference costs by using Amazon SageMaker multi-model endpoints.

The following diagram depicts how MMEs work.

Multiple model artifacts are persisted in an Amazon S3 bucket. When a specific model is invoked, Amazon SageMaker dynamically loads it onto the container hosting the endpoint. If the model is already loaded in the container’s memory, invocation is faster because Amazon SageMaker doesn’t need to download and load it.

Until now, you could use MME with several frameworks, such as TensorFlow, PyTorch, MXNet, SKLearn, and build your own container with a multi-model server. This post introduces the following feature enhancements to MME:

  • MME support for Amazon SageMaker built-in algorithms – MME is now supported natively in the following popular Amazon SageMaker built-in algorithms: XGBoost, linear learner, RCF, and KNN. You can directly use the Amazon SageMaker provided containers while using these algorithms without having to build your own custom container.
  • MME support for Amazon SageMaker inference pipelines – The Amazon SageMaker inference pipeline model consists of a sequence of containers that serve inference requests by combining preprocessing, predictions, and postprocessing data science tasks. An inference pipeline allows you to reuse the same preprocessing code used during model training to process the inference request data used for predictions. You can now deploy an inference pipeline on an MME where one of the containers in the pipeline can dynamically serve requests based on the model being invoked.
  • IAM condition keys for granular access to models – Prior to this enhancement, an AWS Identity and Access Management (IAM) principal with InvokeEndpoint permission on the endpoint resource could invoke all the models hosted on that endpoint. Now, we support granular access to models using IAM condition keys. For example, the following IAM condition restricts the principal’s access to a model persisted in the Amazon Simple Storage Service (Amazon S3) bucket with company_a or common prefixes:
 Condition": { "StringLike": { "sagemaker:TargetModel": ["company_a/*", "common/*"] } }

We also provide a fully functional notebook to demonstrate these enhancements.

Walkthrough overview

To demonstrate these capabilities, the notebook discusses the use case of predicting house prices in multiple cities using linear regression. House prices are predicted based on features like number of bedrooms, number of garages, square footage, and more. Depending on the city, the features affect the house price differently. For example, small changes in the square footage cause a drastic change in house prices in New York City when compared to price changes in Houston.

For accurate house price predictions, we train multiple linear regression models, with a unique location-specific model per city. Each location-specific model is trained on synthetic housing data with randomly generated characteristics. To cost-effectively serve the multiple housing price prediction models, we deploy the models on a single multi-model enabled endpoint, as shown in the following diagram.

The walkthrough includes the following high-level steps:

  1. Examine the synthetic housing data generated.
  2. Preprocess the raw housing data using Scikit-learn.
  3. Train regression models using the built-in Amazon SageMaker linear learner algorithm.
  4. Create an Amazon SageMaker model with multi-model support.
  5. Create an Amazon SageMaker inference pipeline with an Sklearn model and multi-model enabled linear learner model.
  6. Test the inference pipeline by getting predictions from the different linear learner models.
  7. Update the MME with new models.
  8. Monitor the MME with Amazon CloudWatch
  9. Explore fine-grained access to models hosted on the MME using IAM condition keys.

Other steps necessary to import libraries, set up IAM permissions, and use utility functions are defined in the notebook, which this post doesn’t discuss. You can walk through and run the code with the following notebook on the GitHub repo.

Examining the synthetic housing data

The dataset consists of six numerical features that capture the year the house was built, house size in square feet, number of bedrooms, number of bathrooms, lot size, number of garages, and two categorical features: deck and front porch, indicating whether these are present or not.

To see the raw data, enter the following code:

_houses.head()

The following screenshot shows the results.

You can now preprocess the categorical variables (front_porch and deck) using Scikit-learn.

Preprocessing the raw housing data

To preprocess the raw data, you first create an SKLearn estimator and use the sklearn_preprocessor.py script as the entry_point:

#Create the SKLearn estimator with the sklearn_preprocessor.py as the script
from sagemaker.sklearn.estimator import SKLearn
script_path = 'sklearn_preprocessor.py'
sklearn_preprocessor = SKLearn( entry_point=script_path, role=role, train_instance_type="ml.c4.xlarge", sagemaker_session=sagemaker_session_gamma)

You then launch multiple Scikit-learn training jobs to process the raw synthetic data generated for multiple locations. Before running the following code, take the training instance limits in your account and cost into consideration and adjust the PARALLEL_TRAINING_JOBS value accordingly:

preprocessor_transformers = [] for index, loc in enumerate(LOCATIONS[:PARALLEL_TRAINING_JOBS]): print("preprocessing fit input data at ", index , " for loc ", loc) job_name='scikit-learn-preprocessor-{}'.format(strftime('%Y-%m-%d-%H-%M-%S', gmtime())) sklearn_preprocessor.fit({'train': train_inputs[index]}, job_name=job_name, wait=True) ##Once the preprocessor is fit, use tranformer to preprocess the raw training data and store the transformed data right back into s3. transformer = sklearn_preprocessor.transformer( instance_count=1, instance_type='ml.m4.xlarge', assemble_with='Line', accept='text/csv' ) preprocessor_transformers.append(transformer)

When the preprocessors are properly fitted, preprocess the training data using batch transform to directly preprocess the raw data and store back into Amazon S3:

 preprocessed_train_data_path = [] for index, transformer in enumerate(preprocessor_transformers): transformer.transform(train_inputs[index], content_type='text/csv') print('Launching batch transform job: {}'.format(transformer.latest_transform_job.job_name)) preprocessed_train_data_path.append(transformer.output_path)

Training regression models

In this step, you train multiple models, one for each location.

Start by accessing the built-in linear learner algorithm:

from sagemaker.amazon.amazon_estimator import get_image_uri
container = get_image_uri(boto3.Session().region_name, 'linear-learner')
container

Depending on the Region you’re using, you receive output similar to the following:

	382416733822.dkr.ecr.us-east-1.amazonaws.com/linear-learner:1

Next, define a method to launch a training job for a single location using the Amazon SageMaker Estimator API. In the hyperparameter configuration, you use predictor_type='regressor' to indicate that you’re using the algorithm to train a regression model. See the following code:

def launch_training_job(location, transformer): """Launch a linear learner traing job""" train_inputs = '{}/{}'.format(transformer.output_path, "train.csv") val_inputs = '{}/{}'.format(transformer.output_path, "val.csv") print("train_inputs:", train_inputs) print("val_inputs:", val_inputs) full_output_prefix = '{}/model_artifacts/{}'.format(DATA_PREFIX, location) s3_output_path = 's3://{}/{}'.format(BUCKET, full_output_prefix) print("s3_output_path ", s3_output_path) s3_output_path = 's3://{}/{}/model_artifacts/{}'.format(BUCKET, DATA_PREFIX, location) linear_estimator = sagemaker.estimator.Estimator( container, role, train_instance_count=1, train_instance_type='ml.c4.xlarge', output_path=s3_output_path, sagemaker_session=sagemaker_session) linear_estimator.set_hyperparameters( feature_dim=10, mini_batch_size=100, predictor_type='regressor', epochs=10, num_models=32, loss='absolute_loss') DISTRIBUTION_MODE = 'FullyReplicated' train_input = sagemaker.s3_input(s3_data=train_inputs, distribution=DISTRIBUTION_MODE, content_type='text/csv;label_size=1') val_input = sagemaker.s3_input(s3_data=val_inputs, distribution=DISTRIBUTION_MODE, content_type='text/csv;label_size=1') remote_inputs = {'train': train_input, 'validation': val_input} linear_estimator.fit(remote_inputs, wait=False) return linear_estimator.latest_training_job.name

You can now start multiple model training jobs, one for each location. Make sure to choose the correct value for PARALLEL TRAINING_JOBS, taking your AWS account service limits and cost into consideration. In the notebook, this value is set to 4. See the following code:

training_jobs = []
for transformer, loc in zip(preprocessor_transformers, LOCATIONS[:PARALLEL_TRAINING_JOBS]): job = launch_training_job(loc, transformer) training_jobs.append(job)
print('{} training jobs launched: {}'.format(len(training_jobs), training_jobs))

You receive output similar to the following:

4 training jobs launched: [(<sagemaker.estimator.Estimator object at 0x7fb54784b6d8>, 'linear-learner-2020-06-03-03-51-26-548'), (<sagemaker.estimator.Estimator object at 0x7fb5478b3198>, 'linear-learner-2020-06-03-03-51-26-973'), (<sagemaker.estimator.Estimator object at 0x7fb54780dbe0>, 'linear-learner-2020-06-03-03-51-27-775'), (<sagemaker.estimator.Estimator object at 0x7fb5477664e0>, 'linear-learner-2020-06-03-03-51-31-457')]

Wait until all training jobs are complete before proceeding to the next step.

Creating an Amazon SageMaker model with multi-model support

When the training jobs are complete, you’re ready to create an MME.

First, define a method to copy model artifacts from the training job output to a location in Amazon S3 where the MME dynamically loads individual models:

def deploy_artifacts_to_mme(job_name): print("job_name :", job_name) response = sm_client.describe_training_job(TrainingJobName=job_name) source_s3_key,model_name = parse_model_artifacts(response['ModelArtifacts']['S3ModelArtifacts']) copy_source = {'Bucket': BUCKET, 'Key': source_s3_key} key = '{}/{}/{}/{}.tar.gz'.format(DATA_PREFIX, MULTI_MODEL_ARTIFACTS, model_name, model_name) print('Copying {} model\n from: {}\n to: {}...'.format(model_name, source_s3_key, key)) s3_client.copy_object(Bucket=BUCKET, CopySource=copy_source, Key=key)

Copy the model artifacts from all the training jobs to this location:

## Deploy all but the last model trained to MME
for job_name in training_jobs[:-1]: deploy_artifacts_to_mme(job_name)

You receive output similar to the following:

linear-learner-2020-06-03-03-51-26-973
Copying LosAngeles_CA model from: DEMO_MME_LINEAR_LEARNER/model_artifacts/LosAngeles_CA/linear-learner-2020-06-03-03-51-26-973/output/model.tar.gz to: DEMO_MME_LINEAR_LEARNER/multi_model_artifacts/LosAngeles_CA/LosAngeles_CA.tar.gz...
linear-learner-2020-06-03-03-51-27-775
Copying Chicago_IL model from: DEMO_MME_LINEAR_LEARNER/model_artifacts/Chicago_IL/linear-learner-2020-06-03-03-51-27-775/output/model.tar.gz to: DEMO_MME_LINEAR_LEARNER/multi_model_artifacts/Chicago_IL/Chicago_IL.tar.gz...
linear-learner-2020-06-03-03-51-31-457

Create the Amazon SageMaker model entity using the MultiDataModel API:

MODEL_NAME = '{}-{}'.format(HOUSING_MODEL_NAME, strftime('%Y-%m-%d-%H-%M-%S', gmtime())) _model_url = 's3://{}/{}/{}/'.format(BUCKET, DATA_PREFIX, MULTI_MODEL_ARTIFACTS) ll_multi_model = MultiDataModel( name=MODEL_NAME, model_data_prefix=_model_url, image=container, role=role, sagemaker_session=sagemaker

Creating an inference pipeline

Set up an inference pipeline with the PipelineModel API. This sets up a list of models in a single endpoint; for this post, we configure our pipeline model with the fitted Scikit-learn inference model and the fitted MME linear learner model. See the following code:

from sagemaker.model import Model
from sagemaker.pipeline import PipelineModel
import boto3
from time import gmtime, strftime timestamp_prefix = strftime("%Y-%m-%d-%H-%M-%S", gmtime()) scikit_learn_inference_model = sklearn_preprocessor.create_model() model_name = '{}-{}'.format('inference-pipeline', timestamp_prefix)
endpoint_name = '{}-{}'.format('inference-pipeline-ep', timestamp_prefix) sm_model = PipelineModel( name=model_name, role=role, sagemaker_session=sagemaker_session, models=[ scikit_learn_inference_model, ll_multi_model]) sm_model.deploy(initial_instance_count=1, instance_type='ml.m4.xlarge', endpoint_name=endpoint_name)

The MME is now ready to take inference requests and respond with predictions. With the MME, the inference request should include the target model to invoke.

Testing the inference pipeline

You can now get predictions from the different linear learner models. Create a RealTimePredictor with the inference pipeline endpoint:

from sagemaker.predictor import json_serializer, csv_serializer, json_deserializer, RealTimePredictor
from sagemaker.content_types import CONTENT_TYPE_CSV, CONTENT_TYPE_JSON
predictor = RealTimePredictor( endpoint=endpoint_name, sagemaker_session=sagemaker_session, serializer=csv_serializer, content_type=CONTENT_TYPE_CSV, accept=CONTENT_TYPE_JSON)

Define a method to get predictions from the RealTimePredictor:

def predict_one_house_value(features, model_name, predictor_to_use): print('Using model {} to predict price of this house: {}'.format(model_name, features)) body = ','.join(map(str, features)) + '\n' start_time = time.time() response = predictor_to_use.predict(features, target_model=model_name) response_json = json.loads(response) predicted_value = response_json['predictions'][0]['score'] duration = time.time() - start_time print('${:,.2f}, took {:,d} ms\n'.format(predicted_value, int(duration * 1000)))

With MME, the models are dynamically loaded into the container’s memory of the instance hosting the endpoint when invoked. Therefore, the model invocation may take longer when it’s invoked for the first time. When the model is already in the instance container’s memory, the subsequent invocations are faster. If an instance memory utilization is high and a new model needs to be loaded, unused models are unloaded. The unloaded models remain in the instance’s storage volume and can be loaded into container’s memory later without being downloaded from the S3 bucket again. If the instance’s storage volume is full, unused models are deleted from storage volume.

Amazon SageMaker fully manages the loading and unloading of the models, without you having to take any specific actions. However, it’s important to understand this behavior because it has implications on the model invocation latency.

Iterate through invocations with random inputs against a random model and show the predictions and the time it takes for the prediction to come back:

for i in range(10): model_name = LOCATIONS[np.random.randint(1, len(LOCATIONS[:PARALLEL_TRAINING_JOBS]))] full_model_name = '{}/{}.tar.gz'.format(model_name,model_name) predict_one_house_value(gen_random_house()[1:], full_model_name,runtime_sm_client)

You receive output similar to the following:

Using model Chicago_IL/Chicago_IL.tar.gz to predict price of this house: [1993, 2728, 6, 3.0, 0.7, 1, 'y', 'y']
$439,972.62, took 1,166 ms Using model Houston_TX/Houston_TX.tar.gz to predict price of this house: [1989, 1944, 5, 3.0, 1.0, 1, 'n', 'y']
$280,848.00, took 1,086 ms Using model LosAngeles_CA/LosAngeles_CA.tar.gz to predict price of this house: [1968, 2427, 4, 3.0, 1.0, 2, 'y', 'n']
$266,721.31, took 1,029 ms Using model Chicago_IL/Chicago_IL.tar.gz to predict price of this house: [2000, 4024, 2, 1.0, 0.82, 1, 'y', 'y']
$584,069.88, took 53 ms Using model LosAngeles_CA/LosAngeles_CA.tar.gz to predict price of this house: [1986, 3463, 5, 3.0, 0.9, 1, 'y', 'n']
$496,340.19, took 43 ms Using model Chicago_IL/Chicago_IL.tar.gz to predict price of this house: [2002, 3885, 4, 3.0, 1.16, 2, 'n', 'n']
$626,904.12, took 39 ms Using model Chicago_IL/Chicago_IL.tar.gz to predict price of this house: [1992, 1531, 6, 3.0, 0.68, 1, 'y', 'n']
$257,696.17, took 36 ms Using model Chicago_IL/Chicago_IL.tar.gz to predict price of this house: [1992, 2327, 2, 3.0, 0.59, 3, 'n', 'n']
$337,758.22, took 33 ms Using model LosAngeles_CA/LosAngeles_CA.tar.gz to predict price of this house: [1995, 2656, 5, 1.0, 1.16, 0, 'y', 'n']
$390,652.59, took 35 ms Using model LosAngeles_CA/LosAngeles_CA.tar.gz to predict price of this house: [2000, 4086, 2, 3.0, 1.03, 3, 'n', 'y']
$632,995.44, took 35 ms

The output that shows the predicted house price and the time it took for the prediction.

You should consider two different invocations of the same model. The second time, you don’t need to download from Amazon S3 because they’re already present on the instance. You see the inferences return in less time than before. For this use case, the invocation time for the Chicago_IL/Chicago_IL.tar.gz model reduced from 1,166 milliseconds the first time to 53 milliseconds the second time. Similarly, the invocation time for the LosAngeles_CA /LosAngeles_CA.tar.gz model reduced from 1,029 milliseconds to 43 milliseconds.

Updating an MME with new models

To deploy a new model to an existing MME, copy a new set of model artifacts to the same Amazon S3 location you set up earlier. For example, copy the model for the Houston location with the following code:

## Copy the last model
last_training_job=training_jobs[PARALLEL_TRAINING_JOBS-1]
deploy_artifacts_to_mme(last_training_job)

Now you can make predictions using the last model. See the following code:

model_name = LOCATIONS[PARALLEL_TRAINING_JOBS-1]
full_model_name = '{}/{}.tar.gz'.format(model_name,model_name)
predict_one_house_value(gen_random_house()[:-1], full_model_name,predictor)

Monitoring MMEs with CloudWatch metrics

Amazon SageMaker provides CloudWatch metrics for MMEs so you can determine the endpoint usage and the cache hit rate and optimize your endpoint. To analyze the endpoint and the container behavior, you invoke multiple models in this sequence:

##Create 200 copies of the original model and save with different names.
copy_additional_artifacts_to_mme(200)
##Starting with no models loaded into the container
##Invoke the first 100 models
invoke_multiple_models_mme(0,100)
##Invoke the same 100 models again
invoke_multiple_models_mme(0,100)
##This time invoke all 200 models to observe behavior
invoke_multiple_models_mme(0,200)

The following chart shows the behavior of the CloudWatch metrics LoadedModelCount and MemoryUtilization corresponding to these model invocations.

The LoadedModelCount metric continuously increases as more models are invoked, until it levels off at 121. The MemoryUtilization metric of the container also increased correspondingly to around 79%. This shows that the instance chosen to host the endpoint could only maintain 121 models in memory when 200 model invocations were made.

The following chart adds the ModelCacheHit metric to the previous two.

As the number of models loaded to the container memory increase, the ModelCacheHit metric improves. When the same 100 models are invoked the second time, ModelCacheHit reaches 1. When new models not yet loaded are invoked, ModelCacheHit decreases again.

You can use CloudWatch charts to help make ongoing decisions on the optimal choice of instance type, instance count, and number of models that a given endpoint should host.

Exploring granular access to models hosted on an MME

Because of the role attached to the notebook instance, it can invoke all models hosted on the MME. However, you can restrict this model invocation access to specific models by using IAM condition keys. To explore this, you create a new IAM role and IAM policy with a condition key to restrict access to a single model. You then assume this new role and verify that only a single target model can be invoked.

The role assigned to the Amazon SageMaker notebook instance should allow IAM role and IAM policy creation for the next steps to be successful.

Create an IAM role with the following code:

#Create a new role that can be assumed by this notebook. The roles should allow access to only a single model.
path='/'
role_name="{}{}".format('allow_invoke_ny_model_role', strftime('%Y-%m-%d-%H-%M-%S', gmtime()))
description='Role that allows invoking a single model'
action_string = "sts:AssumeRole"
trust_policy={ "Version": "2012-10-17", "Statement": [ { "Sid": "statement1", "Effect": "Allow", "Principal": { "AWS": role }, "Action": "sts:AssumeRole" } ] } response = iam_client.create_role( Path=path, RoleName=role_name, AssumeRolePolicyDocument=json.dumps(trust_policy), Description=description, MaxSessionDuration=3600
) print(response)

Create an IAM policy with a condition key to restrict access to only the NewYork model:

managed_policy = { "Version": "2012-10-17", "Statement": [ { "Sid": "SageMakerAccess", "Action": "sagemaker:InvokeEndpoint", "Effect": "Allow", "Resource":endpoint_resource_arn, "Condition": { "StringLike": { "sagemaker:TargetModel": ["NewYork_NY/*"] } } } ]
}
response = iam_client.create_policy( PolicyName='allow_invoke_ny_model_policy', PolicyDocument=json.dumps(managed_policy)
)

Attach the IAM policy to the IAM role:

iam_client.attach_role_policy( PolicyArn=policy_arn, RoleName=role_name
)

Assume the new role and create a RealTimePredictor object runtime client:

## Invoke with the role that has access to only NY model
sts_connection = boto3.client('sts')
assumed_role_limited_access = sts_connection.assume_role( RoleArn=role_arn, RoleSessionName="MME_Invoke_NY_Model"
)
assumed_role_limited_access['AssumedRoleUser']['Arn'] #Create sagemaker runtime client with assumed role
ACCESS_KEY = assumed_role_limited_access['Credentials']['AccessKeyId']
SECRET_KEY = assumed_role_limited_access['Credentials']['SecretAccessKey']
SESSION_TOKEN = assumed_role_limited_access['Credentials']['SessionToken'] runtime_sm_client_with_assumed_role = boto3.client( service_name='sagemaker-runtime', aws_access_key_id=ACCESS_KEY, aws_secret_access_key=SECRET_KEY, aws_session_token=SESSION_TOKEN,
) #SageMaker session with the assumed role
sagemakerSessionAssumedRole = sagemaker.Session(sagemaker_runtime_client=runtime_sm_client_with_assumed_role)
#Create a RealTimePredictor with the assumed role.
predictorAssumedRole = RealTimePredictor( endpoint=endpoint_name, sagemaker_session=sagemakerSessionAssumedRole, serializer=csv_serializer, content_type=CONTENT_TYPE_CSV, accept=CONTENT_TYPE_JSON)

Now invoke the NewYork_NY model:

full_model_name = 'NewYork_NY/NewYork_NY.tar.gz'
predict_one_house_value(gen_random_house()[:-1], full_model_name, predictorAssumedRole) 

You receive output similar to the following:

Using model NewYork_NY/NewYork_NY.tar.gz to predict price of this house: [1992, 1659, 2, 2.0, 0.87, 2, 'n', 'y']
$222,008.38, took 154 ms

Next, try to invoke a different model (Chicago_IL/Chicago_IL.tar.gz). This should throw an error because the assumed role isn’t authorized to invoke this model. See the following code:

full_model_name = 'Chicago_IL/Chicago_IL.tar.gz' predict_one_house_value(gen_random_house()[:-1], full_model_name,predictorAssumedRole) 

You receive output similar to the following:

ClientError: An error occurred (AccessDeniedException) when calling the InvokeEndpoint operation: User: arn:aws:sts::xxxxxxxxxxxx:assumed-role/allow_invoke_ny_model_role/MME_Invoke_NY_Model is not authorized to perform: sagemaker:InvokeEndpoint on resource: arn:aws:sagemaker:us-east-1:xxxxxxxxxxxx:endpoint/inference-pipeline-ep-2020-07-01-15-46-51

Conclusion

Amazon SageMaker MMEs are a very powerful tool for teams developing multiple ML models to save significant costs and lower deployment overhead for a large number of ML models. This post discussed the new capabilities of Amazon SageMaker MMEs: native integration with Amazon SageMaker built-in algorithms (such as linear learner and KNN), native integration with inference pipelines, and fine-grained controlled access to the multiple models hosted on a single endpoint using IAM condition keys.

The notebook included with the post provided detailed instructions on training multiple linear learner models for house price predictions for multiple locations, hosting all the models on a single MME, and controlling access to the individual models.When considering multi-model enabled endpoints, you should balance the cost savings and the latency requirements.

Give Amazon SageMaker MMEs a try and leave your feedback in the comments.


About the Author

Sireesha Muppala is a AI/ML Specialist Solutions Architect at AWS, providing guidance to customers on architecting and implementing machine learning solutions at scale. She received her Ph.D. in Computer Science from University of Colorado, Colorado Springs. In her spare time, Sireesha loves to run and hike Colorado trails.

Michael Pham is a Software Development Engineer in the Amazon SageMaker team. His current work focuses on helping developers efficiently host machine learning models. In his spare time he enjoys Olympic weightlifting, reading, and playing chess.

Source: https://aws.amazon.com/blogs/machine-learning/using-amazon-sagemaker-inference-pipelines-with-multi-model-endpoints/

Continue Reading
AI6 hours ago

Using Amazon SageMaker inference pipelines with multi-model endpoints

AI6 hours ago

Using Amazon SageMaker inference pipelines with multi-model endpoints

AI6 hours ago

Using Amazon SageMaker inference pipelines with multi-model endpoints

AI6 hours ago

Using Amazon SageMaker inference pipelines with multi-model endpoints

AI6 hours ago

Using Amazon SageMaker inference pipelines with multi-model endpoints

AI6 hours ago

Using Amazon SageMaker inference pipelines with multi-model endpoints

AI6 hours ago

Using Amazon SageMaker inference pipelines with multi-model endpoints

AI6 hours ago

Time series forecasting using unstructured data with Amazon Forecast and the Amazon SageMaker Neural Topic Model

AI6 hours ago

Time series forecasting using unstructured data with Amazon Forecast and the Amazon SageMaker Neural Topic Model

AI6 hours ago

Time series forecasting using unstructured data with Amazon Forecast and the Amazon SageMaker Neural Topic Model

AI6 hours ago

Time series forecasting using unstructured data with Amazon Forecast and the Amazon SageMaker Neural Topic Model

AI6 hours ago

Time series forecasting using unstructured data with Amazon Forecast and the Amazon SageMaker Neural Topic Model

AI6 hours ago

Time series forecasting using unstructured data with Amazon Forecast and the Amazon SageMaker Neural Topic Model

AI6 hours ago

Time series forecasting using unstructured data with Amazon Forecast and the Amazon SageMaker Neural Topic Model

AI8 hours ago

Performing batch fraud predictions using Amazon Fraud Detector, Amazon S3, and AWS Lambda

AI8 hours ago

Performing batch fraud predictions using Amazon Fraud Detector, Amazon S3, and AWS Lambda

AI8 hours ago

Performing batch fraud predictions using Amazon Fraud Detector, Amazon S3, and AWS Lambda

AI8 hours ago

Performing batch fraud predictions using Amazon Fraud Detector, Amazon S3, and AWS Lambda

AI8 hours ago

Performing batch fraud predictions using Amazon Fraud Detector, Amazon S3, and AWS Lambda

AI8 hours ago

Performing batch fraud predictions using Amazon Fraud Detector, Amazon S3, and AWS Lambda

Trending