Connect with us

AI

Optimizing applications with EagleDream in Amazon CodeGuru Profiler

This is a guest post by Dustin Potter at EagleDream Technologies. In their own words, “EagleDream Technologies educates, enables, and empowers the world’s greatest companies to use cloud-native technology to transform their business. With extensive experience architecting workloads on the cloud, as well as a full suite of skills in application modernization, data engineering, data […]

Published

on

This is a guest post by Dustin Potter at EagleDream Technologies. In their own words, “EagleDream Technologies educates, enables, and empowers the world’s greatest companies to use cloud-native technology to transform their business. With extensive experience architecting workloads on the cloud, as well as a full suite of skills in application modernization, data engineering, data lake design, and analytics, EagleDream has built a growing practice in helping businesses redefine what’s possible with technology.”

EagleDream Technologies is a trusted cloud-native transformation company and APN Premier Consulting Partner for businesses using AWS. EagleDream is unique in using its cloud-native software engineering and application modernization expertise to guide you through your journey to the cloud, optimize your operations, and transform how you do business using AWS. Our team of highly trained professionals helps accelerate projects at every stage of the cloud journey. This post shares our experience using Amazon CodeGuru Profiler to help one of our customers optimize their application under tight deadlines.

Project overview

Our team received a unique opportunity to work with one of the industry’s most disruptive airline technology leaders, who uses their expertise to build custom integrated airline booking, loyalty management, and ecommerce platforms. This customer reached out to our team to help optimize their new application. They already had a few clients using the system, but they recently signed a deal with a major airline that would represent a load increase to their platform five times in size. It was critical that they prepare for this significant increase in activity. The customer was running a traditional three-tier application written in Java that used Amazon Aurora for the data layer. They had already implemented autoscaling for the web servers and database but realized something was wrong when they started running load tests. During the first load test, the web tier expanded to over 80 servers and Aurora reached the max number of read replicas.

Our team knew we had to dive deep and investigate the application code. We had previously used other application profiling tools and realized how invaluable they can be when diagnosing these types of issues. Also, AWS recently announced Amazon CodeGuru and we were eager to try it out. On top of that, the price and ease of setup was a driving factor for us. We had looked at an existing commercial application performance monitoring tool, but it required more invasive changes to utilize. To automate the install of these tools, we would have needed to make changes to the customer’s deployment and infrastructure setup. We had to move quickly with as little disruption to their ongoing feature development as possible, which contributed to our final decision to use CodeGuru.

CodeGuru workflow

After we decided on CodeGuru, it was easy to get CodeGuru Profiler installed and start capturing metrics. There are two ways to profile an application. The first is to reference the profiler agent during the start of the application by using the standard -javaagent parameter. This is useful if the group performing the profiling isn’t the development team, for example in an organization with more traditional development and operation silos. This is easy to set up because all that’s needed is to download the .jar published in the documentation and alter any startup scripts to include the agent and the name of the profiling group to use.

The second way to profile the application is to include the profiler code via a dependency in your build system and instantiate a profiling thread somewhere at the entry point of the program. This option is great if the development team is handling the profiling. For this particular use case, we fell into the second group, so including it in the code was the quickest and easiest approach. We added the library as a Maven dependency and added a single line of application code. After the code was committed, we used the customer’s existing Jenkins setup to deploy the latest build to an integration environment. The final step of the pipeline was to run load tests against the new build. After the tests completed, we had a flame graph that we used to start identifying any issues.

The workflow includes the following steps:

  1. Developers check in code.
  2. The check-in triggers a Jenkins job.
  3. Maven compiles the code.
  4. Jenkins deploys the artifact to the development environment.
  5. Load tests run against the newly deployed code.
  6. CodeGuru Profiler monitors the environment and generates a flame graph and a recommendation report.

The following diagram illustrates the workflow.

Flame graphs group together stack traces and highlight which part of the code consumes the most resources. The following screenshot is a sample flame graph from an AWS demo application for reference.

After CodeGuru generated the flame graphs and recommendations report, we took an iterative approach and tackled the biggest offenders first. The flame graphs provided perceptive guidance for actionable recommendations that it discovers and made it easy to identify which execution paths were taking the longest to complete. By looking at the longest frames first, we identified that the customer faced challenges around thread safety, which was leading to locking issues. To resolve issues collaboratively with the client, we created a Slack channel to review the latest graphs and provide recommendations directly to the developers. After the developers implemented the suggested changes, we deployed a new build and had a corresponding graph in a few minutes.

Results

After just one week, our team successfully alleviated their scaling challenges at the web service layer. When we ran the load tests, we saw expected results of a few servers instead of the more than 80 servers previously. Additionally, because we optimized the code, we reduced the existing application footprint, which saved our customer 30% of compute load.

Cost savings aside, one of the most notable benefits of this project was developer education. With CodeGuru Profiler pinpointing where the bottlenecks were, the developers could recognize inefficient patterns in the code that might lead to severe performance hits down the road. This helped them better understand the features of the language they’re using and armed them with increased efficiency in future development and debugging.

Conclusion

With the web service layer better optimized, our next step is to use CodeGuru and other AWS tools like Performance Insights to tackle the database layer. Even if you aren’t experiencing extreme performance challenges, CodeGuru Profiler can provide valuable insights to the health of your application in any environment, from development all the way to production, with minimal CPU utilization. Integrating these results as part of the SDLC or DevOps process leads to better efficiency and gives you and your developers the tools you need to be successful. To learn more about how to get started with CodeGuru Profiler and CodeGuru Reviewer, check the documentation found here.


About the Author

Dustin Potter is a Principal Cloud Solutions Architect at EagleDream Technologies.

Source: https://aws.amazon.com/blogs/machine-learning/optimizing-applications-with-eagledream-in-amazon-codeguru-profiler/

AI

How does it know?! Some beginner chatbot tech for newbies.

Published

on

Wouter S. Sligter

Most people will know by now what a chatbot or conversational AI is. But how does one design and build an intelligent chatbot? Let’s investigate some essential concepts in bot design: intents, context, flows and pages.

I like using Google’s Dialogflow platform for my intelligent assistants. Dialogflow has a very accurate NLP engine at a cost structure that is extremely competitive. In Dialogflow there are roughly two ways to build the bot tech. One is through intents and context, the other is by means of flows and pages. Both of these design approaches have their own version of Dialogflow: “ES” and “CX”.

Dialogflow ES is the older version of the Dialogflow platform which works with intents, context and entities. Slot filling and fulfillment also help manage the conversation flow. Here are Google’s docs on these concepts: https://cloud.google.com/dialogflow/es/docs/concepts

Context is what distinguishes ES from CX. It’s a way to understand where the conversation is headed. Here’s a diagram that may help understand how context works. Each phrase that you type triggers an intent in Dialogflow. Each response by the bot happens after your message has triggered the most likely intent. It’s Dialogflow’s NLP engine that decides which intent best matches your message.

Wouter Sligter, 2020

What’s funny is that even though you typed ‘yes’ in exactly the same way twice, the bot gave you different answers. There are two intents that have been programmed to respond to ‘yes’, but only one of them is selected. This is how we control the flow of a conversation by using context in Dialogflow ES.

Unfortunately the way we program context into a bot on Dialogflow ES is not supported by any visual tools like the diagram above. Instead we need to type this context in each intent without seeing the connection to other intents. This makes the creation of complex bots quite tedious and that’s why we map out the design of our bots in other tools before we start building in ES.

The newer Dialogflow CX allows for a more advanced way of managing the conversation. By adding flows and pages as additional control tools we can now visualize and control conversations easily within the CX platform.

source: https://cloud.google.com/dialogflow/cx/docs/basics

This entire diagram is a ‘flow’ and the blue blocks are ‘pages’. This visualization shows how we create bots in Dialogflow CX. It’s immediately clear how the different pages are related and how the user will move between parts of the conversation. Visuals like this are completely absent in Dialogflow ES.

It then makes sense to use different flows for different conversation paths. A possible distinction in flows might be “ordering” (as seen here), “FAQs” and “promotions”. Structuring bots through flows and pages is a great way to handle complex bots and the visual UI in CX makes it even better.

At the time of writing (October 2020) Dialogflow CX only supports English NLP and its pricing model is surprisingly steep compared to ES. But bots are becoming critical tech for an increasing number of companies and the cost reductions and quality of conversations are enormous. Building and managing bots is in many cases an ongoing task rather than a single, rounded-off project. For these reasons it makes total sense to invest in a tool that can handle increasing complexity in an easy-to-use UI such as Dialogflow CX.

This article aims to give insight into the tech behind bot creation and Dialogflow is used merely as an example. To understand how I can help you build or manage your conversational assistant on the platform of your choice, please contact me on LinkedIn.

Source: https://chatbotslife.com/how-does-it-know-some-beginner-chatbot-tech-for-newbies-fa75ff59651f?source=rss—-a49517e4c30b—4

Continue Reading

AI

Who is chatbot Eliza?

Between 1964 and 1966 Eliza was born, one of the very first conversational agents. Discover the whole story.

Published

on


Frédéric Pierron

Between 1964 and 1966 Eliza was born, one of the very first conversational agents. Its creator, Joseph Weizenbaum was a researcher at the famous Artificial Intelligence Laboratory of the MIT (Massachusetts Institute of Technology). His goal was to enable a conversation between a computer and a human user. More precisely, the program simulates a conversation with a Rogérian psychoanalyst, whose method consists in reformulating the patient’s words to let him explore his thoughts himself.

Joseph Weizenbaum (Professor emeritus of computer science at MIT). Location: Balcony of his apartment in Berlin, Germany. By Ulrich Hansen, Germany (Journalist) / Wikipedia.

The program was rather rudimentary at the time. It consists in recognizing key words or expressions and displaying in return questions constructed from these key words. When the program does not have an answer available, it displays a “I understand” that is quite effective, albeit laconic.

Weizenbaum explains that his primary intention was to show the superficiality of communication between a human and a machine. He was very surprised when he realized that many users were getting caught up in the game, completely forgetting that the program was without real intelligence and devoid of any feelings and emotions. He even said that his secretary would discreetly consult Eliza to solve his personal problems, forcing the researcher to unplug the program.

Conversing with a computer thinking it is a human being is one of the criteria of Turing’s famous test. Artificial intelligence is said to exist when a human cannot discern whether or not the interlocutor is human. Eliza, in this sense, passes the test brilliantly according to its users.
Eliza thus opened the way (or the voice!) to what has been called chatbots, an abbreviation of chatterbot, itself an abbreviation of chatter robot, literally “talking robot”.

Source: https://chatbotslife.com/who-is-chatbot-eliza-bfeef79df804?source=rss—-a49517e4c30b—4

Continue Reading

AI

FermiNet: Quantum Physics and Chemistry from First Principles

Weve developed a new neural network architecture, the Fermionic Neural Network or FermiNet, which is well-suited to modeling the quantum state of large collections of electrons, the fundamental building blocks of chemical bonds.

Published

on

Unfortunately, 0.5% error still isn’t enough to be useful to the working chemist. The energy in molecular bonds is just a tiny fraction of the total energy of a system, and correctly predicting whether a molecule is stable can often depend on just 0.001% of the total energy of a system, or about 0.2% of the remaining “correlation” energy. For instance, while the total energy of the electrons in a butadiene molecule is almost 100,000 kilocalories per mole, the difference in energy between different possible shapes of the molecule is just 1 kilocalorie per mole. That means that if you want to correctly predict butadiene’s natural shape, then the same level of precision is needed as measuring the width of a football field down to the millimeter.

With the advent of digital computing after World War II, scientists developed a whole menagerie of computational methods that went beyond this mean field description of electrons. While these methods come in a bewildering alphabet soup of abbreviations, they all generally fall somewhere on an axis that trades off accuracy with efficiency. At one extreme, there are methods that are essentially exact, but scale worse than exponentially with the number of electrons, making them impractical for all but the smallest molecules. At the other extreme are methods that scale linearly, but are not very accurate. These computational methods have had an enormous impact on the practice of chemistry – the 1998 Nobel Prize in chemistry was awarded to the originators of many of these algorithms.

Fermionic Neural Networks

Despite the breadth of existing computational quantum mechanical tools, we felt a new method was needed to address the problem of efficient representation. There’s a reason that the largest quantum chemical calculations only run into the tens of thousands of electrons for even the most approximate methods, while classical chemical calculation techniques like molecular dynamics can handle millions of atoms. The state of a classical system can be described easily – we just have to track the position and momentum of each particle. Representing the state of a quantum system is far more challenging. A probability has to be assigned to every possible configuration of electron positions. This is encoded in the wavefunction, which assigns a positive or negative number to every configuration of electrons, and the wavefunction squared gives the probability of finding the system in that configuration. The space of all possible configurations is enormous – if you tried to represent it as a grid with 100 points along each dimension, then the number of possible electron configurations for the silicon atom would be larger than the number of atoms in the universe!

This is exactly where we thought deep neural networks could help. In the last several years, there have been huge advances in representing complex, high-dimensional probability distributions with neural networks. We now know how to train these networks efficiently and scalably. We surmised that, given these networks have already proven their mettle at fitting high-dimensional functions in artificial intelligence problems, maybe they could be used to represent quantum wavefunctions as well. We were not the first people to think of this – researchers such as Giuseppe Carleo and Matthias Troyer and others have shown how modern deep learning could be used for solving idealised quantum problems. We wanted to use deep neural networks to tackle more realistic problems in chemistry and condensed matter physics, and that meant including electrons in our calculations.

There is just one wrinkle when dealing with electrons. Electrons must obey the Pauli exclusion principle, which means that they can’t be in the same space at the same time. This is because electrons are a type of particle known as fermions, which include the building blocks of most matter – protons, neutrons, quarks, neutrinos, etc. Their wavefunction must be antisymmetric – if you swap the position of two electrons, the wavefunction gets multiplied by -1. That means that if two electrons are on top of each other, the wavefunction (and the probability of that configuration) will be zero.

This meant we had to develop a new type of neural network that was antisymmetric with respect to its inputs, which we have dubbed the Fermionic Neural Network, or FermiNet. In most quantum chemistry methods, antisymmetry is introduced using a function called the determinant. The determinant of a matrix has the property that if you swap two rows, the output gets multiplied by -1, just like a wavefunction for fermions. So you can take a bunch of single-electron functions, evaluate them for every electron in your system, and pack all of the results into one matrix. The determinant of that matrix is then a properly antisymmetric wavefunction. The major limitation of this approach is that the resulting function – known as a Slater determinant – is not very general. Wavefunctions of real systems are usually far more complicated. The typical way to improve on this is to take a large linear combination of Slater determinants – sometimes millions or more – and add some simple corrections based on pairs of electrons. Even then, this may not be enough to accurately compute energies.

Source: https://deepmind.com/blog/article/FermiNet

Continue Reading
AI7 hours ago

How does it know?! Some beginner chatbot tech for newbies.

AI7 hours ago

Who is chatbot Eliza?

AI21 hours ago

FermiNet: Quantum Physics and Chemistry from First Principles

AI1 day ago

How to take S3 backups with DejaDup on Ubuntu 20.10

AI2 days ago

How banks and finance enterprises can strengthen their support with AI-powered customer service…

AI2 days ago

GBoard Introducing Voice — Smooth Texting and Typing

AI3 days ago

Automatically detecting personal protective equipment on persons in images using Amazon Rekognition

AI3 days ago

Automatically detecting personal protective equipment on persons in images using Amazon Rekognition

AI3 days ago

Automatically detecting personal protective equipment on persons in images using Amazon Rekognition

AI3 days ago

Automatically detecting personal protective equipment on persons in images using Amazon Rekognition

AI3 days ago

Automatically detecting personal protective equipment on persons in images using Amazon Rekognition

AI3 days ago

Automatically detecting personal protective equipment on persons in images using Amazon Rekognition

AI3 days ago

Automatically detecting personal protective equipment on persons in images using Amazon Rekognition

AI3 days ago

Automatically detecting personal protective equipment on persons in images using Amazon Rekognition

AI3 days ago

Automatically detecting personal protective equipment on persons in images using Amazon Rekognition

AI3 days ago

Automatically detecting personal protective equipment on persons in images using Amazon Rekognition

AI3 days ago

Automatically detecting personal protective equipment on persons in images using Amazon Rekognition

AI3 days ago

Automatically detecting personal protective equipment on persons in images using Amazon Rekognition

AI3 days ago

Automatically detecting personal protective equipment on persons in images using Amazon Rekognition

AI3 days ago

Automatically detecting personal protective equipment on persons in images using Amazon Rekognition

Trending