Connect with us

AI

Why China is Already Ahead of the United States in AI Implementation

There’s AI research, and then there’s AI implementation. Companies with little or no experience in core AI research capabilities can easily become leaders in a thin field. Amazon did it in cloud computing even though it was not a pioneer, and other companies are doing the same in AI. Now take several steps backwards and […]

The post Why China is Already Ahead of the United States in AI Implementation appeared first on 1redDrop.

Published

on

There’s AI research, and then there’s AI implementation. Companies with little or no experience in core AI research capabilities can easily become leaders in a thin field. Amazon did it in cloud computing even though it was not a pioneer, and other companies are doing the same in AI.

Now take several steps backwards and look at the bigger picture. Countries that have the most suitable environments for AI implementation but very little history with AI can still make it big. China is a shining example, although perhaps not a great one from a moral or privacy perspective.

And that’s where some countries lag behind while others surge ahead. Let’s look at two key players in the AI space – the United States of America and the People’s Republic of China – to see how these countries are responding to the huge AI demand that has been generated over the last few years. Looking at the political and commercial aspects is a good starting point.

The Politics of AI

Politically speaking, AI is a double-edged sword. It can either be used as a promise for a better tomorrow or a threat of chaos to come. And there lies the core difference in the way the political leaders of these two great nations look at AI. An objective view of China reveals a landscape conducive to implementing projects at scale, whether it’s about creating an electric car charging network or enticing a company like Tesla to set up shop there.

The political coherence in China is what makes this possible. In the United States, politics as much as policies right now are a little more than white noise. Things are said but they don’t have the direction or impetus to push them forward. The executive order signed by Trump exactly two months ago is a perfect example of that.

The “American A.I. Initiative” does little to reassure us that America is ‘on top of all things AI.’ It offers neither financial nor strategic clarity. Most of all, it does nothing towards contributing to a comprehensive framework by which its mandates can be implemented.

Meanwhile, China’s AI plan is already two years and several tens of billions of dollars old. As Forbes’ Madhvi Mavadiya puts it so politely, “the U.S. has been lacking in the national policy area.”

That’s a bit of an understatement because the same thing has happened with cyber security, cloud computing, autonomous vehicle technology and a handful of other critical areas. The political case for AI in America is just not strong enough.

The Commerce of AI

That being said, the might of commercial enterprise does do a lot to make up for the weakness of political will. The capitalistic bent of the U.S. is nowhere more visibly present than in the realm of AI research. Corporate and academic giants are all in the game, and there is now a dribble of AI products coming through because of sheer competition and the need to keep up with the oriental Joneses.

America has been the hotbed of AI research for at least more than half a century now, and it continues to foster an ideal environment from an academic perspective. The lead might still be there on the research front.

China’s interest in AI research is purely for practical applications. They have little time for the ethics of AI because their commercial framework is closely tied to their executive backbone. National policy is baked into everything they do. That actually means more freedom from a development perspective. Since the industry is full of state-owned or state-backed commercial entities, their political and commercial systems won’t allow for independent misuse of AI technology.

In contrast, here’s an excerpt from a New York Times piece highlighting America’s inhibitions and internal challenges:

“Last year, these concerns increased when Google pulled out of a project to build A.I for the Pentagon after employees protested that the technology they were working on could be used for lethal purposes.”

And that’s really what’s holding America back. On the one side there is a dire need for swift and decisive action on the part of the government, which is sorely lacking; on the other is the need to turn a profit from the fruits of AI research, which is severely limited by lack of regulatory governance. Technologies can’t spread effectively when hindered in this manner.

The U.S. must first recognize that the lead they had for so many decades has all but vanished. One executive order that doesn’t talk about how it will all be funded is hardly a fitting response to China’s aggressive work in AI over the past two years. That work alone can wipe out America’s claim to still have the lead in AI. They’re running on the fumes of commercial demand rather than from a need to seep the nation’s infrastructure in a figurative AI solution.

To be clear, consumers in both countries will get access to the same technologies. But at what price? That’s the question. As AI products proliferate through China, there will soon be a distinctive commercial advantage of using Chinese expertise to implement AI systems. Companies like Baidu, Tencent and Alibaba are waiting with hundreds of billions of combined investment dollars, and every one of those dollars aims to make a friend and bring it back home to China.

In turn, this will allow China to invest even more into a nationally integrated AI program, leaving the U.S. further behind.

When President Xi Jinping addressed the Politburo of the Central Committee of the Chinese Communist Party in October 2018, this is what he focused on:

“Strengthening leadership, planning well, clarifying tasks, and laying a solid foundation to promote the healthy development of China’s new generation of artificial intelligence.”

When China says this you know they have the fiscal and political will to make it happen. Trump has had little to say about AI, and even if he did, you’d know that there was neither a blueprint to help the country get somewhere, nor was there a specific goal to aim for. A shotgun fired in the dark at a swift-moving target wearing all black, for lack of a better expression.

China openly admitted its weakness in 2017 by publishing the “Next Generation Artificial Intelligence Development Plan” with a clear blueprint for Made in China 2025 and an objective to catch up with the U.S. in technology as well as applications by 2030.

But it looks like the battle of AI is already lost. China is squarely on its path while the U.S. is barely finding its bearings. Can the country buck the Trump trend of all talk and no walk and still get its AI agenda out front? That’s hard to tell, but it’s clear that the U.S. still doesn’t have a firm plan in place. That could give China a further advantage over the next few years.

AI

Bringing real-time machine learning-powered insights to rugby using Amazon SageMaker

The Guinness Six Nations Championship began in 1883 as the Home Nations Championship among England, Ireland, Scotland, and Wales, with the inclusion of France in 1910 and Italy in 2000. It is among the oldest surviving rugby traditions and one of the best-attended sporting events in the world. The COVID-19 outbreak disrupted the end of […]

Published

on

The Guinness Six Nations Championship began in 1883 as the Home Nations Championship among England, Ireland, Scotland, and Wales, with the inclusion of France in 1910 and Italy in 2000. It is among the oldest surviving rugby traditions and one of the best-attended sporting events in the world. The COVID-19 outbreak disrupted the end of the 2020 Championship and four games were postponed. The remaining rounds resumed on October 24. With the increasing application of artificial intelligence and machine learning (ML) in sports analytics, AWS and Stats Perform partnered to bring ML-powered, real-time stats to the game of rugby, to enhance fan engagement and provide valuable insights into the game.

This post summarizes the collaborative effort between the Guinness Six Nations Rugby Championship, Stats Perform, and AWS to develop an ML-driven approach with Amazon SageMaker and other AWS services that predicts the probability of a successful penalty kick, computed in real time and broadcast live during the game. AWS infrastructure enables single-digit millisecond latency for kick predictions during inference. The Kick Predictor stat is one of the many new AWS-powered, on-screen dynamic Matchstats that provide fans with a greater understanding of key in-game events, including scrum analysis, play patterns, rucks and tackles, and power game analysis. For more information about other stats developed for rugby using AWS services, see the Six Nations Rugby website.

Rugby is a form of football with a 23-player match day squad. 15 players on each team are on the field, with additional substitutions waiting to get involved in the full-contact sport. The objective of the game is to outscore the opposing team, and one way of scoring is to kick a goal. The ability to kick accurately is one of the most critical elements of rugby, and there are two ways to score with a kick: through a conversion (worth two points) and a penalty (worth three points).

Predicting the likelihood of a successful kick is important because it enhances fan engagement during the game by showing the success probability before the player kicks the ball. There are usually 40–60 seconds of stoppage time while the player sets up for the kick, during which the Kick Predictor stat can appear on-screen to fans. Commentators also have time to predict the outcome, quantify the difficulty of each kick, and compare kickers in similar situations. Moreover, teams may start to use kicking probability models in the future to determine which player should kick given the position of the penalty on the pitch.

Developing an ML solution

To calculate the penalty success probability, the Amazon Machine Learning Solutions Lab used Amazon SageMaker to train, test, and deploy an ML model from historical in-game events data, which calculates the kick predictions from anywhere in the field. The following sections explain the dataset and preprocessing steps, the model training, and model deployment procedures.

Dataset and preprocessing

Stats Perform provided the dataset for training the goal kick model. It contained millions of events from historical rugby matches from 46 leagues from 2007–2019. The raw JSON events data that was collected during live rugby matches was ingested and stored on Amazon Simple Storage Service (Amazon S3). It was then parsed and preprocessed in an Amazon SageMaker notebook instance. After selecting the kick-related events, the training data comprised approximately 67,000 kicks, with approximately 50,000 (75%) successful kicks and 17,000 misses (25%).

The following graph shows a summary of kicks taken during a sample game. The athletes kicked from different angles and various distances.

Rugby experts contributed valuable insights to the data preprocessing, which included detecting and removing anomalies, such as unreasonable kicks. The clean CSV data went back to an S3 bucket for ML training.

The following graph depicts the heatmap of the kicks after preprocessing. The left-side kicks are mirrored. The brighter colors indicated a higher chance of scoring, standardized between 0 to 1.

Feature engineering

To better capture the real-world event, the ML Solutions Lab engineered several features using exploratory data analysis and insights from rugby experts. The features that went into the modeling fell into three main categories:

  • Location-based features – The zone in which the athlete takes the kick and the distance and angle of the kick to the goal. The x-coordinates of the kicks are mirrored along the center of the rugby pitch to eliminate the left or right bias in the model.
  • Player performance features – The mean success rates of the kicker in a given field zone, in the Championship, and in the kicker’s entire career.
  • In-game situational features – The kicker’s team (home or away), the scoring situation before they take the kick, and the period of the game in which they take the kick.

The location-based and player performance features are the most important features in the model.

After feature engineering, the categorical variables were one-hot encoded, and to avoid the bias of the model towards large-value variables, the numerical predictors were standardized. During the model training phase, a player’s historical performance features were pushed to Amazon DynamoDB tables. DynamoDB helped provide single-digit millisecond latency for kick predictions during inference.

Training and deploying models

To explore a wide range of classification algorithms (such as logistic regression, random forests, XGBoost, and neural networks), a 10-fold stratified cross-validation approach was used for model training. After exploring different algorithms, the built-in XGBoost in Amazon SageMaker was used due to its better prediction performance and inference speed. Additionally, its implementation has a smaller memory footprint, better logging, and improved hyperparameter optimization (HPO) compared to the original code base.

HPO, or tuning, is the process of choosing a set of optimal hyperparameters for a learning algorithm, and is a challenging element in any ML problem. HPO in Amazon SageMaker uses an implementation of Bayesian optimization to choose the best hyperparameters for the next training job. Amazon SageMaker HPO automatically launches multiple training jobs with different hyperparameter settings, evaluates the results of those training jobs based on a predefined objective metric, and selects improved hyperparameter settings for future attempts based on previous results.

The following diagram illustrates the model training workflow.

Optimizing hyperparameters in Amazon SageMaker

You can configure training jobs and when the hyperparameter tuning job launches by initializing an estimator, which includes the container image for the algorithm (for this use case, XGBoost), configuration for the output of the training jobs, the values of static algorithm hyperparameters, and the type and number of instances to use for the training jobs. For more information, see Train a Model.

To create the XGBoost estimator for this use case, enter the following code:

import boto3
import sagemaker
from sagemaker.tuner import IntegerParameter, CategoricalParameter, ContinuousParameter, HyperparameterTuner
from sagemaker.amazon.amazon_estimator import get_image_uri
BUCKET = <bucket name>
PREFIX = 'kicker/xgboost/'
region = boto3.Session().region_name
role = sagemaker.get_execution_role()
smclient = boto3.Session().client('sagemaker')
sess = sagemaker.Session()
s3_output_path = ‘s3://{}/{}/output’.format(BUCKET, PREFIX) container = get_image_uri(region, 'xgboost', repo_version='0.90-1') xgb = sagemaker.estimator.Estimator(container, role, train_instance_count=4, train_instance_type= 'ml.m4.xlarge', output_path=s3_output_path, sagemaker_session=sess)

After you create the XGBoost estimator object, set its initial hyperparameter values as shown in the following code:

xgb.set_hyperparameters(eval_metric='auc', objective= 'binary:logistic', num_round=200, rate_drop=0.3, max_depth=5, subsample=0.8, gamma=2, eta=0.2, scale_pos_weight=2.85) #For class imbalance weights # Specifying the objective metric (auc on validation set)
OBJECTIVE_METRIC_NAME = ‘validation:auc’ # specifying the hyper parameters and their ranges
HYPERPARAMETER_RANGES = {'eta': ContinuousParameter(0, 1), 'alpha': ContinuousParameter(0, 2), 'max_depth': IntegerParameter(1, 10)}

For this post, AUC (area under the ROC curve) is the evaluation metric. This enables the tuning job to measure the performance of the different training jobs. The kick prediction is also a binary classification problem, which is specified in the objective argument as a binary:logistic. There is also a set of XGBoost-specific hyperparameters that you can tune. For more information, see Tune an XGBoost model.

Next, create a HyperparameterTuner object by indicating the XGBoost estimator, the hyperparameter ranges, passing the parameters, the objective metric name and definition, and tuning resource configurations, such as the number of training jobs to run in total and how many training jobs can run in parallel. Amazon SageMaker extracts the metric from Amazon CloudWatch Logs with a regular expression. See the following code:

tuner = HyperparameterTuner(xgb, OBJECTIVE_METRIC_NAME, HYPERPARAMETER_RANGES, max_jobs=20, max_parallel_jobs=4)
s3_input_train = sagemaker.s3_input(s3_data='s3://{}/{}/train'.format(BUCKET, PREFIX), content_type='csv')
s3_input_validation = sagemaker.s3_input(s3_data='s3://{}/{}/validation/'.format(BUCKET, PREFIX), content_type='csv')
tuner.fit({'train': s3_input_train, 'validation':

Finally, launch a hyperparameter tuning job by calling the fit() function. This function takes the paths of the training and validation datasets in the S3 bucket. After you create the hyperparameter tuning job, you can track its progress via the Amazon SageMaker console. The training time depends on the instance type and number of instances you selected during tuning setup.

Deploying the model on Amazon SageMaker

When the training jobs are complete, you can deploy the best performing model. If you’d like to compare models for A/B testing, Amazon SageMaker supports hosting representational state transfer (REST) endpoints for multiple models. To set this up, create an endpoint configuration that describes the distribution of traffic across the models. In addition, the endpoint configuration describes the instance type required for model deployment. The first step is to get the name of the best performing training job and create the model name.

After you create the endpoint configuration, you’re ready to deploy the actual endpoint for serving inference requests. The result is an endpoint that can you can validate and incorporate into production applications. For more information about deploying models, see Deploy the Model to Amazon SageMaker Hosting Services. To create the endpoint configuration and deploy it, enter the following code:

endpoint_name = 'Kicker-XGBoostEndpoint'
xgb_predictor = tuner.deploy(initial_instance_count=1, instance_type='ml.t2.medium', endpoint_name=endpoint_name)

After you create the endpoint, you can request a prediction in real time.

Building a RESTful API for real-time model inference

You can create a secure and scalable RESTful API that enables you to request the model prediction based on the input values. It’s easy and convenient to develop different APIs using AWS services.

The following diagram illustrates the model inference workflow.

First, you request the probability of the kick conversion by passing parameters through Amazon API Gateway, such as the location and zone of the kick, kicker ID, league and Championship ID, the game’s period, if the kicker’s team is playing home or away, and the team score status.

The API Gateway passes the values to the AWS Lambda function, which parses the values and requests additional features related to the player’s performance from DynamoDB lookup tables. These include the mean success rates of the kicking player in a given field zone, in the Championship, and in the kicker’s entire career. If the player doesn’t exist in the database, the model uses the average performance in the database in the given kicking location. After the function combines all the values, it standardizes the data and sends it to the Amazon SageMaker model endpoint for prediction.

The model performs the prediction and returns the predicted probability to the Lambda function. The function parses the returned value and sends it back to API Gateway. API Gateway responds with the output prediction. The end-to-end process latency is less than a second.

The following screenshot shows example input and output of the API. The RESTful API also outputs the average success rate of all the players in the given location and zone to get the comparison of the player’s performance with the overall average.

For instructions on creating a RESTful API, see Call an Amazon SageMaker model endpoint using Amazon API Gateway and AWS Lambda.

Bringing design principles into sports analytics

To create the first real-time prediction model for the tournament with a millisecond latency requirement, the ML Solutions Lab team worked backwards to identify areas in which design thinking could save time and resources. The team worked on an end-to-end notebook within an Amazon SageMaker environment, which enabled data access, raw data parsing, data preprocessing and visualization, feature engineering, model training and evaluation, and model deployment in one place. This helped in automating the modeling process.

Moreover, the ML Solutions Lab team implemented a model update iteration for when the model was updated with newly generated data, in which the model parses and processes only the additional data. This brings computational and time efficiencies to the modeling.

In terms of next steps, the Stats Perform AI team has been looking at the next stage of rugby analysis by breaking down the other strategic facets as line-outs, scrums and teams, and continuous phases of play using the fine-grain spatio-temporal data captured. The state-of-the-art feature representations and latent factor modelling (which have been utilized so effectively in Stats Perform’s “Edge” match-analysis and recruitment products in soccer) means that there is plenty of fertile space for innovation that can be explored in rugby.

Conclusion

Six Nations Rugby, Stats Perform, and AWS came together to bring the first real-time prediction model to the 2020 Guinness Six Nations Rugby Championship. The model determined a penalty or conversion kick success probability from anywhere in the field. They used Amazon SageMaker to build, train, and deploy the ML model with variables grouped into three main categories: location-based features, player performance features, and in-game situational features. The Amazon SageMaker endpoint provided prediction results with subsecond latency. The model was used by broadcasters during the live games in the Six Nations 2020 Championship, bringing a new metric to millions of rugby fans.

You can find full, end-to-end examples of creating custom training jobs, training state-of-the-art object detection models, and model deployment on Amazon SageMaker on the AWS Labs GitHub repo. To learn more about the ML Solutions Lab, see Amazon Machine Learning Solutions Lab.


About the Authors

Mehdi Noori is a Data Scientist at the Amazon ML Solutions Lab, where he works with customers across various verticals, and helps them to accelerate their cloud migration journey, and to solve their ML problems using state-of-the-art solutions and technologies.

Tesfagabir Meharizghi is a Data Scientist at the Amazon ML Solutions Lab where he works with customers across different verticals accelerate their use of artificial intelligence and AWS cloud services to solve their business challenges. Outside of work, he enjoys spending time with his family and reading books.

Patrick Lucey is the Chief Scientist at Stats Perform. Patrick started the Artificial Intelligence group at Stats Perform in 2015, with thegroup focusing on both computer vision and predictive modelling capabilities in sport. Previously, he was at Disney Research for 5 years, where he conducted research into automatic sports broadcasting using large amounts of spatiotemporal tracking data. He received his BEng(EE) from USQ and PhD from QUT, Australia in 2003 and 2008 respectively. He was also co-author of the best paper at the 2016 MIT Sloan Sports Analytics Conference and in 2017 & 2018 was co-author of best-paper runner-up at the same conference.

Xavier Ragot is Data Scientist with the Amazon ML Solution Lab team where he helps design creative ML solution to address customers’ business problems in various industries.

Source: https://aws.amazon.com/blogs/machine-learning/bringing-real-time-machine-learning-powered-insights-to-rugby-using-amazon-sagemaker/

Continue Reading

AI

Bringing real-time machine learning-powered insights to rugby using Amazon SageMaker

The Guinness Six Nations Championship began in 1883 as the Home Nations Championship among England, Ireland, Scotland, and Wales, with the inclusion of France in 1910 and Italy in 2000. It is among the oldest surviving rugby traditions and one of the best-attended sporting events in the world. The COVID-19 outbreak disrupted the end of […]

Published

on

The Guinness Six Nations Championship began in 1883 as the Home Nations Championship among England, Ireland, Scotland, and Wales, with the inclusion of France in 1910 and Italy in 2000. It is among the oldest surviving rugby traditions and one of the best-attended sporting events in the world. The COVID-19 outbreak disrupted the end of the 2020 Championship and four games were postponed. The remaining rounds resumed on October 24. With the increasing application of artificial intelligence and machine learning (ML) in sports analytics, AWS and Stats Perform partnered to bring ML-powered, real-time stats to the game of rugby, to enhance fan engagement and provide valuable insights into the game.

This post summarizes the collaborative effort between the Guinness Six Nations Rugby Championship, Stats Perform, and AWS to develop an ML-driven approach with Amazon SageMaker and other AWS services that predicts the probability of a successful penalty kick, computed in real time and broadcast live during the game. AWS infrastructure enables single-digit millisecond latency for kick predictions during inference. The Kick Predictor stat is one of the many new AWS-powered, on-screen dynamic Matchstats that provide fans with a greater understanding of key in-game events, including scrum analysis, play patterns, rucks and tackles, and power game analysis. For more information about other stats developed for rugby using AWS services, see the Six Nations Rugby website.

Rugby is a form of football with a 23-player match day squad. 15 players on each team are on the field, with additional substitutions waiting to get involved in the full-contact sport. The objective of the game is to outscore the opposing team, and one way of scoring is to kick a goal. The ability to kick accurately is one of the most critical elements of rugby, and there are two ways to score with a kick: through a conversion (worth two points) and a penalty (worth three points).

Predicting the likelihood of a successful kick is important because it enhances fan engagement during the game by showing the success probability before the player kicks the ball. There are usually 40–60 seconds of stoppage time while the player sets up for the kick, during which the Kick Predictor stat can appear on-screen to fans. Commentators also have time to predict the outcome, quantify the difficulty of each kick, and compare kickers in similar situations. Moreover, teams may start to use kicking probability models in the future to determine which player should kick given the position of the penalty on the pitch.

Developing an ML solution

To calculate the penalty success probability, the Amazon Machine Learning Solutions Lab used Amazon SageMaker to train, test, and deploy an ML model from historical in-game events data, which calculates the kick predictions from anywhere in the field. The following sections explain the dataset and preprocessing steps, the model training, and model deployment procedures.

Dataset and preprocessing

Stats Perform provided the dataset for training the goal kick model. It contained millions of events from historical rugby matches from 46 leagues from 2007–2019. The raw JSON events data that was collected during live rugby matches was ingested and stored on Amazon Simple Storage Service (Amazon S3). It was then parsed and preprocessed in an Amazon SageMaker notebook instance. After selecting the kick-related events, the training data comprised approximately 67,000 kicks, with approximately 50,000 (75%) successful kicks and 17,000 misses (25%).

The following graph shows a summary of kicks taken during a sample game. The athletes kicked from different angles and various distances.

Rugby experts contributed valuable insights to the data preprocessing, which included detecting and removing anomalies, such as unreasonable kicks. The clean CSV data went back to an S3 bucket for ML training.

The following graph depicts the heatmap of the kicks after preprocessing. The left-side kicks are mirrored. The brighter colors indicated a higher chance of scoring, standardized between 0 to 1.

Feature engineering

To better capture the real-world event, the ML Solutions Lab engineered several features using exploratory data analysis and insights from rugby experts. The features that went into the modeling fell into three main categories:

  • Location-based features – The zone in which the athlete takes the kick and the distance and angle of the kick to the goal. The x-coordinates of the kicks are mirrored along the center of the rugby pitch to eliminate the left or right bias in the model.
  • Player performance features – The mean success rates of the kicker in a given field zone, in the Championship, and in the kicker’s entire career.
  • In-game situational features – The kicker’s team (home or away), the scoring situation before they take the kick, and the period of the game in which they take the kick.

The location-based and player performance features are the most important features in the model.

After feature engineering, the categorical variables were one-hot encoded, and to avoid the bias of the model towards large-value variables, the numerical predictors were standardized. During the model training phase, a player’s historical performance features were pushed to Amazon DynamoDB tables. DynamoDB helped provide single-digit millisecond latency for kick predictions during inference.

Training and deploying models

To explore a wide range of classification algorithms (such as logistic regression, random forests, XGBoost, and neural networks), a 10-fold stratified cross-validation approach was used for model training. After exploring different algorithms, the built-in XGBoost in Amazon SageMaker was used due to its better prediction performance and inference speed. Additionally, its implementation has a smaller memory footprint, better logging, and improved hyperparameter optimization (HPO) compared to the original code base.

HPO, or tuning, is the process of choosing a set of optimal hyperparameters for a learning algorithm, and is a challenging element in any ML problem. HPO in Amazon SageMaker uses an implementation of Bayesian optimization to choose the best hyperparameters for the next training job. Amazon SageMaker HPO automatically launches multiple training jobs with different hyperparameter settings, evaluates the results of those training jobs based on a predefined objective metric, and selects improved hyperparameter settings for future attempts based on previous results.

The following diagram illustrates the model training workflow.

Optimizing hyperparameters in Amazon SageMaker

You can configure training jobs and when the hyperparameter tuning job launches by initializing an estimator, which includes the container image for the algorithm (for this use case, XGBoost), configuration for the output of the training jobs, the values of static algorithm hyperparameters, and the type and number of instances to use for the training jobs. For more information, see Train a Model.

To create the XGBoost estimator for this use case, enter the following code:

import boto3
import sagemaker
from sagemaker.tuner import IntegerParameter, CategoricalParameter, ContinuousParameter, HyperparameterTuner
from sagemaker.amazon.amazon_estimator import get_image_uri
BUCKET = <bucket name>
PREFIX = 'kicker/xgboost/'
region = boto3.Session().region_name
role = sagemaker.get_execution_role()
smclient = boto3.Session().client('sagemaker')
sess = sagemaker.Session()
s3_output_path = ‘s3://{}/{}/output’.format(BUCKET, PREFIX) container = get_image_uri(region, 'xgboost', repo_version='0.90-1') xgb = sagemaker.estimator.Estimator(container, role, train_instance_count=4, train_instance_type= 'ml.m4.xlarge', output_path=s3_output_path, sagemaker_session=sess)

After you create the XGBoost estimator object, set its initial hyperparameter values as shown in the following code:

xgb.set_hyperparameters(eval_metric='auc', objective= 'binary:logistic', num_round=200, rate_drop=0.3, max_depth=5, subsample=0.8, gamma=2, eta=0.2, scale_pos_weight=2.85) #For class imbalance weights # Specifying the objective metric (auc on validation set)
OBJECTIVE_METRIC_NAME = ‘validation:auc’ # specifying the hyper parameters and their ranges
HYPERPARAMETER_RANGES = {'eta': ContinuousParameter(0, 1), 'alpha': ContinuousParameter(0, 2), 'max_depth': IntegerParameter(1, 10)}

For this post, AUC (area under the ROC curve) is the evaluation metric. This enables the tuning job to measure the performance of the different training jobs. The kick prediction is also a binary classification problem, which is specified in the objective argument as a binary:logistic. There is also a set of XGBoost-specific hyperparameters that you can tune. For more information, see Tune an XGBoost model.

Next, create a HyperparameterTuner object by indicating the XGBoost estimator, the hyperparameter ranges, passing the parameters, the objective metric name and definition, and tuning resource configurations, such as the number of training jobs to run in total and how many training jobs can run in parallel. Amazon SageMaker extracts the metric from Amazon CloudWatch Logs with a regular expression. See the following code:

tuner = HyperparameterTuner(xgb, OBJECTIVE_METRIC_NAME, HYPERPARAMETER_RANGES, max_jobs=20, max_parallel_jobs=4)
s3_input_train = sagemaker.s3_input(s3_data='s3://{}/{}/train'.format(BUCKET, PREFIX), content_type='csv')
s3_input_validation = sagemaker.s3_input(s3_data='s3://{}/{}/validation/'.format(BUCKET, PREFIX), content_type='csv')
tuner.fit({'train': s3_input_train, 'validation':

Finally, launch a hyperparameter tuning job by calling the fit() function. This function takes the paths of the training and validation datasets in the S3 bucket. After you create the hyperparameter tuning job, you can track its progress via the Amazon SageMaker console. The training time depends on the instance type and number of instances you selected during tuning setup.

Deploying the model on Amazon SageMaker

When the training jobs are complete, you can deploy the best performing model. If you’d like to compare models for A/B testing, Amazon SageMaker supports hosting representational state transfer (REST) endpoints for multiple models. To set this up, create an endpoint configuration that describes the distribution of traffic across the models. In addition, the endpoint configuration describes the instance type required for model deployment. The first step is to get the name of the best performing training job and create the model name.

After you create the endpoint configuration, you’re ready to deploy the actual endpoint for serving inference requests. The result is an endpoint that can you can validate and incorporate into production applications. For more information about deploying models, see Deploy the Model to Amazon SageMaker Hosting Services. To create the endpoint configuration and deploy it, enter the following code:

endpoint_name = 'Kicker-XGBoostEndpoint'
xgb_predictor = tuner.deploy(initial_instance_count=1, instance_type='ml.t2.medium', endpoint_name=endpoint_name)

After you create the endpoint, you can request a prediction in real time.

Building a RESTful API for real-time model inference

You can create a secure and scalable RESTful API that enables you to request the model prediction based on the input values. It’s easy and convenient to develop different APIs using AWS services.

The following diagram illustrates the model inference workflow.

First, you request the probability of the kick conversion by passing parameters through Amazon API Gateway, such as the location and zone of the kick, kicker ID, league and Championship ID, the game’s period, if the kicker’s team is playing home or away, and the team score status.

The API Gateway passes the values to the AWS Lambda function, which parses the values and requests additional features related to the player’s performance from DynamoDB lookup tables. These include the mean success rates of the kicking player in a given field zone, in the Championship, and in the kicker’s entire career. If the player doesn’t exist in the database, the model uses the average performance in the database in the given kicking location. After the function combines all the values, it standardizes the data and sends it to the Amazon SageMaker model endpoint for prediction.

The model performs the prediction and returns the predicted probability to the Lambda function. The function parses the returned value and sends it back to API Gateway. API Gateway responds with the output prediction. The end-to-end process latency is less than a second.

The following screenshot shows example input and output of the API. The RESTful API also outputs the average success rate of all the players in the given location and zone to get the comparison of the player’s performance with the overall average.

For instructions on creating a RESTful API, see Call an Amazon SageMaker model endpoint using Amazon API Gateway and AWS Lambda.

Bringing design principles into sports analytics

To create the first real-time prediction model for the tournament with a millisecond latency requirement, the ML Solutions Lab team worked backwards to identify areas in which design thinking could save time and resources. The team worked on an end-to-end notebook within an Amazon SageMaker environment, which enabled data access, raw data parsing, data preprocessing and visualization, feature engineering, model training and evaluation, and model deployment in one place. This helped in automating the modeling process.

Moreover, the ML Solutions Lab team implemented a model update iteration for when the model was updated with newly generated data, in which the model parses and processes only the additional data. This brings computational and time efficiencies to the modeling.

In terms of next steps, the Stats Perform AI team has been looking at the next stage of rugby analysis by breaking down the other strategic facets as line-outs, scrums and teams, and continuous phases of play using the fine-grain spatio-temporal data captured. The state-of-the-art feature representations and latent factor modelling (which have been utilized so effectively in Stats Perform’s “Edge” match-analysis and recruitment products in soccer) means that there is plenty of fertile space for innovation that can be explored in rugby.

Conclusion

Six Nations Rugby, Stats Perform, and AWS came together to bring the first real-time prediction model to the 2020 Guinness Six Nations Rugby Championship. The model determined a penalty or conversion kick success probability from anywhere in the field. They used Amazon SageMaker to build, train, and deploy the ML model with variables grouped into three main categories: location-based features, player performance features, and in-game situational features. The Amazon SageMaker endpoint provided prediction results with subsecond latency. The model was used by broadcasters during the live games in the Six Nations 2020 Championship, bringing a new metric to millions of rugby fans.

You can find full, end-to-end examples of creating custom training jobs, training state-of-the-art object detection models, and model deployment on Amazon SageMaker on the AWS Labs GitHub repo. To learn more about the ML Solutions Lab, see Amazon Machine Learning Solutions Lab.


About the Authors

Mehdi Noori is a Data Scientist at the Amazon ML Solutions Lab, where he works with customers across various verticals, and helps them to accelerate their cloud migration journey, and to solve their ML problems using state-of-the-art solutions and technologies.

Tesfagabir Meharizghi is a Data Scientist at the Amazon ML Solutions Lab where he works with customers across different verticals accelerate their use of artificial intelligence and AWS cloud services to solve their business challenges. Outside of work, he enjoys spending time with his family and reading books.

Patrick Lucey is the Chief Scientist at Stats Perform. Patrick started the Artificial Intelligence group at Stats Perform in 2015, with thegroup focusing on both computer vision and predictive modelling capabilities in sport. Previously, he was at Disney Research for 5 years, where he conducted research into automatic sports broadcasting using large amounts of spatiotemporal tracking data. He received his BEng(EE) from USQ and PhD from QUT, Australia in 2003 and 2008 respectively. He was also co-author of the best paper at the 2016 MIT Sloan Sports Analytics Conference and in 2017 & 2018 was co-author of best-paper runner-up at the same conference.

Xavier Ragot is Data Scientist with the Amazon ML Solution Lab team where he helps design creative ML solution to address customers’ business problems in various industries.

Source: https://aws.amazon.com/blogs/machine-learning/bringing-real-time-machine-learning-powered-insights-to-rugby-using-amazon-sagemaker/

Continue Reading

AI

Bringing real-time machine learning-powered insights to rugby using Amazon SageMaker

The Guinness Six Nations Championship began in 1883 as the Home Nations Championship among England, Ireland, Scotland, and Wales, with the inclusion of France in 1910 and Italy in 2000. It is among the oldest surviving rugby traditions and one of the best-attended sporting events in the world. The COVID-19 outbreak disrupted the end of […]

Published

on

The Guinness Six Nations Championship began in 1883 as the Home Nations Championship among England, Ireland, Scotland, and Wales, with the inclusion of France in 1910 and Italy in 2000. It is among the oldest surviving rugby traditions and one of the best-attended sporting events in the world. The COVID-19 outbreak disrupted the end of the 2020 Championship and four games were postponed. The remaining rounds resumed on October 24. With the increasing application of artificial intelligence and machine learning (ML) in sports analytics, AWS and Stats Perform partnered to bring ML-powered, real-time stats to the game of rugby, to enhance fan engagement and provide valuable insights into the game.

This post summarizes the collaborative effort between the Guinness Six Nations Rugby Championship, Stats Perform, and AWS to develop an ML-driven approach with Amazon SageMaker and other AWS services that predicts the probability of a successful penalty kick, computed in real time and broadcast live during the game. AWS infrastructure enables single-digit millisecond latency for kick predictions during inference. The Kick Predictor stat is one of the many new AWS-powered, on-screen dynamic Matchstats that provide fans with a greater understanding of key in-game events, including scrum analysis, play patterns, rucks and tackles, and power game analysis. For more information about other stats developed for rugby using AWS services, see the Six Nations Rugby website.

Rugby is a form of football with a 23-player match day squad. 15 players on each team are on the field, with additional substitutions waiting to get involved in the full-contact sport. The objective of the game is to outscore the opposing team, and one way of scoring is to kick a goal. The ability to kick accurately is one of the most critical elements of rugby, and there are two ways to score with a kick: through a conversion (worth two points) and a penalty (worth three points).

Predicting the likelihood of a successful kick is important because it enhances fan engagement during the game by showing the success probability before the player kicks the ball. There are usually 40–60 seconds of stoppage time while the player sets up for the kick, during which the Kick Predictor stat can appear on-screen to fans. Commentators also have time to predict the outcome, quantify the difficulty of each kick, and compare kickers in similar situations. Moreover, teams may start to use kicking probability models in the future to determine which player should kick given the position of the penalty on the pitch.

Developing an ML solution

To calculate the penalty success probability, the Amazon Machine Learning Solutions Lab used Amazon SageMaker to train, test, and deploy an ML model from historical in-game events data, which calculates the kick predictions from anywhere in the field. The following sections explain the dataset and preprocessing steps, the model training, and model deployment procedures.

Dataset and preprocessing

Stats Perform provided the dataset for training the goal kick model. It contained millions of events from historical rugby matches from 46 leagues from 2007–2019. The raw JSON events data that was collected during live rugby matches was ingested and stored on Amazon Simple Storage Service (Amazon S3). It was then parsed and preprocessed in an Amazon SageMaker notebook instance. After selecting the kick-related events, the training data comprised approximately 67,000 kicks, with approximately 50,000 (75%) successful kicks and 17,000 misses (25%).

The following graph shows a summary of kicks taken during a sample game. The athletes kicked from different angles and various distances.

Rugby experts contributed valuable insights to the data preprocessing, which included detecting and removing anomalies, such as unreasonable kicks. The clean CSV data went back to an S3 bucket for ML training.

The following graph depicts the heatmap of the kicks after preprocessing. The left-side kicks are mirrored. The brighter colors indicated a higher chance of scoring, standardized between 0 to 1.

Feature engineering

To better capture the real-world event, the ML Solutions Lab engineered several features using exploratory data analysis and insights from rugby experts. The features that went into the modeling fell into three main categories:

  • Location-based features – The zone in which the athlete takes the kick and the distance and angle of the kick to the goal. The x-coordinates of the kicks are mirrored along the center of the rugby pitch to eliminate the left or right bias in the model.
  • Player performance features – The mean success rates of the kicker in a given field zone, in the Championship, and in the kicker’s entire career.
  • In-game situational features – The kicker’s team (home or away), the scoring situation before they take the kick, and the period of the game in which they take the kick.

The location-based and player performance features are the most important features in the model.

After feature engineering, the categorical variables were one-hot encoded, and to avoid the bias of the model towards large-value variables, the numerical predictors were standardized. During the model training phase, a player’s historical performance features were pushed to Amazon DynamoDB tables. DynamoDB helped provide single-digit millisecond latency for kick predictions during inference.

Training and deploying models

To explore a wide range of classification algorithms (such as logistic regression, random forests, XGBoost, and neural networks), a 10-fold stratified cross-validation approach was used for model training. After exploring different algorithms, the built-in XGBoost in Amazon SageMaker was used due to its better prediction performance and inference speed. Additionally, its implementation has a smaller memory footprint, better logging, and improved hyperparameter optimization (HPO) compared to the original code base.

HPO, or tuning, is the process of choosing a set of optimal hyperparameters for a learning algorithm, and is a challenging element in any ML problem. HPO in Amazon SageMaker uses an implementation of Bayesian optimization to choose the best hyperparameters for the next training job. Amazon SageMaker HPO automatically launches multiple training jobs with different hyperparameter settings, evaluates the results of those training jobs based on a predefined objective metric, and selects improved hyperparameter settings for future attempts based on previous results.

The following diagram illustrates the model training workflow.

Optimizing hyperparameters in Amazon SageMaker

You can configure training jobs and when the hyperparameter tuning job launches by initializing an estimator, which includes the container image for the algorithm (for this use case, XGBoost), configuration for the output of the training jobs, the values of static algorithm hyperparameters, and the type and number of instances to use for the training jobs. For more information, see Train a Model.

To create the XGBoost estimator for this use case, enter the following code:

import boto3
import sagemaker
from sagemaker.tuner import IntegerParameter, CategoricalParameter, ContinuousParameter, HyperparameterTuner
from sagemaker.amazon.amazon_estimator import get_image_uri
BUCKET = <bucket name>
PREFIX = 'kicker/xgboost/'
region = boto3.Session().region_name
role = sagemaker.get_execution_role()
smclient = boto3.Session().client('sagemaker')
sess = sagemaker.Session()
s3_output_path = ‘s3://{}/{}/output’.format(BUCKET, PREFIX) container = get_image_uri(region, 'xgboost', repo_version='0.90-1') xgb = sagemaker.estimator.Estimator(container, role, train_instance_count=4, train_instance_type= 'ml.m4.xlarge', output_path=s3_output_path, sagemaker_session=sess)

After you create the XGBoost estimator object, set its initial hyperparameter values as shown in the following code:

xgb.set_hyperparameters(eval_metric='auc', objective= 'binary:logistic', num_round=200, rate_drop=0.3, max_depth=5, subsample=0.8, gamma=2, eta=0.2, scale_pos_weight=2.85) #For class imbalance weights # Specifying the objective metric (auc on validation set)
OBJECTIVE_METRIC_NAME = ‘validation:auc’ # specifying the hyper parameters and their ranges
HYPERPARAMETER_RANGES = {'eta': ContinuousParameter(0, 1), 'alpha': ContinuousParameter(0, 2), 'max_depth': IntegerParameter(1, 10)}

For this post, AUC (area under the ROC curve) is the evaluation metric. This enables the tuning job to measure the performance of the different training jobs. The kick prediction is also a binary classification problem, which is specified in the objective argument as a binary:logistic. There is also a set of XGBoost-specific hyperparameters that you can tune. For more information, see Tune an XGBoost model.

Next, create a HyperparameterTuner object by indicating the XGBoost estimator, the hyperparameter ranges, passing the parameters, the objective metric name and definition, and tuning resource configurations, such as the number of training jobs to run in total and how many training jobs can run in parallel. Amazon SageMaker extracts the metric from Amazon CloudWatch Logs with a regular expression. See the following code:

tuner = HyperparameterTuner(xgb, OBJECTIVE_METRIC_NAME, HYPERPARAMETER_RANGES, max_jobs=20, max_parallel_jobs=4)
s3_input_train = sagemaker.s3_input(s3_data='s3://{}/{}/train'.format(BUCKET, PREFIX), content_type='csv')
s3_input_validation = sagemaker.s3_input(s3_data='s3://{}/{}/validation/'.format(BUCKET, PREFIX), content_type='csv')
tuner.fit({'train': s3_input_train, 'validation':

Finally, launch a hyperparameter tuning job by calling the fit() function. This function takes the paths of the training and validation datasets in the S3 bucket. After you create the hyperparameter tuning job, you can track its progress via the Amazon SageMaker console. The training time depends on the instance type and number of instances you selected during tuning setup.

Deploying the model on Amazon SageMaker

When the training jobs are complete, you can deploy the best performing model. If you’d like to compare models for A/B testing, Amazon SageMaker supports hosting representational state transfer (REST) endpoints for multiple models. To set this up, create an endpoint configuration that describes the distribution of traffic across the models. In addition, the endpoint configuration describes the instance type required for model deployment. The first step is to get the name of the best performing training job and create the model name.

After you create the endpoint configuration, you’re ready to deploy the actual endpoint for serving inference requests. The result is an endpoint that can you can validate and incorporate into production applications. For more information about deploying models, see Deploy the Model to Amazon SageMaker Hosting Services. To create the endpoint configuration and deploy it, enter the following code:

endpoint_name = 'Kicker-XGBoostEndpoint'
xgb_predictor = tuner.deploy(initial_instance_count=1, instance_type='ml.t2.medium', endpoint_name=endpoint_name)

After you create the endpoint, you can request a prediction in real time.

Building a RESTful API for real-time model inference

You can create a secure and scalable RESTful API that enables you to request the model prediction based on the input values. It’s easy and convenient to develop different APIs using AWS services.

The following diagram illustrates the model inference workflow.

First, you request the probability of the kick conversion by passing parameters through Amazon API Gateway, such as the location and zone of the kick, kicker ID, league and Championship ID, the game’s period, if the kicker’s team is playing home or away, and the team score status.

The API Gateway passes the values to the AWS Lambda function, which parses the values and requests additional features related to the player’s performance from DynamoDB lookup tables. These include the mean success rates of the kicking player in a given field zone, in the Championship, and in the kicker’s entire career. If the player doesn’t exist in the database, the model uses the average performance in the database in the given kicking location. After the function combines all the values, it standardizes the data and sends it to the Amazon SageMaker model endpoint for prediction.

The model performs the prediction and returns the predicted probability to the Lambda function. The function parses the returned value and sends it back to API Gateway. API Gateway responds with the output prediction. The end-to-end process latency is less than a second.

The following screenshot shows example input and output of the API. The RESTful API also outputs the average success rate of all the players in the given location and zone to get the comparison of the player’s performance with the overall average.

For instructions on creating a RESTful API, see Call an Amazon SageMaker model endpoint using Amazon API Gateway and AWS Lambda.

Bringing design principles into sports analytics

To create the first real-time prediction model for the tournament with a millisecond latency requirement, the ML Solutions Lab team worked backwards to identify areas in which design thinking could save time and resources. The team worked on an end-to-end notebook within an Amazon SageMaker environment, which enabled data access, raw data parsing, data preprocessing and visualization, feature engineering, model training and evaluation, and model deployment in one place. This helped in automating the modeling process.

Moreover, the ML Solutions Lab team implemented a model update iteration for when the model was updated with newly generated data, in which the model parses and processes only the additional data. This brings computational and time efficiencies to the modeling.

In terms of next steps, the Stats Perform AI team has been looking at the next stage of rugby analysis by breaking down the other strategic facets as line-outs, scrums and teams, and continuous phases of play using the fine-grain spatio-temporal data captured. The state-of-the-art feature representations and latent factor modelling (which have been utilized so effectively in Stats Perform’s “Edge” match-analysis and recruitment products in soccer) means that there is plenty of fertile space for innovation that can be explored in rugby.

Conclusion

Six Nations Rugby, Stats Perform, and AWS came together to bring the first real-time prediction model to the 2020 Guinness Six Nations Rugby Championship. The model determined a penalty or conversion kick success probability from anywhere in the field. They used Amazon SageMaker to build, train, and deploy the ML model with variables grouped into three main categories: location-based features, player performance features, and in-game situational features. The Amazon SageMaker endpoint provided prediction results with subsecond latency. The model was used by broadcasters during the live games in the Six Nations 2020 Championship, bringing a new metric to millions of rugby fans.

You can find full, end-to-end examples of creating custom training jobs, training state-of-the-art object detection models, and model deployment on Amazon SageMaker on the AWS Labs GitHub repo. To learn more about the ML Solutions Lab, see Amazon Machine Learning Solutions Lab.


About the Authors

Mehdi Noori is a Data Scientist at the Amazon ML Solutions Lab, where he works with customers across various verticals, and helps them to accelerate their cloud migration journey, and to solve their ML problems using state-of-the-art solutions and technologies.

Tesfagabir Meharizghi is a Data Scientist at the Amazon ML Solutions Lab where he works with customers across different verticals accelerate their use of artificial intelligence and AWS cloud services to solve their business challenges. Outside of work, he enjoys spending time with his family and reading books.

Patrick Lucey is the Chief Scientist at Stats Perform. Patrick started the Artificial Intelligence group at Stats Perform in 2015, with thegroup focusing on both computer vision and predictive modelling capabilities in sport. Previously, he was at Disney Research for 5 years, where he conducted research into automatic sports broadcasting using large amounts of spatiotemporal tracking data. He received his BEng(EE) from USQ and PhD from QUT, Australia in 2003 and 2008 respectively. He was also co-author of the best paper at the 2016 MIT Sloan Sports Analytics Conference and in 2017 & 2018 was co-author of best-paper runner-up at the same conference.

Xavier Ragot is Data Scientist with the Amazon ML Solution Lab team where he helps design creative ML solution to address customers’ business problems in various industries.

Source: https://aws.amazon.com/blogs/machine-learning/bringing-real-time-machine-learning-powered-insights-to-rugby-using-amazon-sagemaker/

Continue Reading
AI8 hours ago

Bringing real-time machine learning-powered insights to rugby using Amazon SageMaker

AI8 hours ago

Bringing real-time machine learning-powered insights to rugby using Amazon SageMaker

AI8 hours ago

Bringing real-time machine learning-powered insights to rugby using Amazon SageMaker

AI8 hours ago

Bringing real-time machine learning-powered insights to rugby using Amazon SageMaker

AI8 hours ago

Bringing real-time machine learning-powered insights to rugby using Amazon SageMaker

AI8 hours ago

Bringing real-time machine learning-powered insights to rugby using Amazon SageMaker

AI8 hours ago

Bringing real-time machine learning-powered insights to rugby using Amazon SageMaker

AI8 hours ago

Bringing real-time machine learning-powered insights to rugby using Amazon SageMaker

AI8 hours ago

Bringing real-time machine learning-powered insights to rugby using Amazon SageMaker

AI8 hours ago

Bringing real-time machine learning-powered insights to rugby using Amazon SageMaker

AI8 hours ago

Bringing real-time machine learning-powered insights to rugby using Amazon SageMaker

AI8 hours ago

Building an NLU-powered search application with Amazon SageMaker and the Amazon ES KNN feature

AI8 hours ago

Building an NLU-powered search application with Amazon SageMaker and the Amazon ES KNN feature

AI8 hours ago

Building an NLU-powered search application with Amazon SageMaker and the Amazon ES KNN feature

AI8 hours ago

Building an NLU-powered search application with Amazon SageMaker and the Amazon ES KNN feature

AI8 hours ago

Building an NLU-powered search application with Amazon SageMaker and the Amazon ES KNN feature

AI8 hours ago

Building an NLU-powered search application with Amazon SageMaker and the Amazon ES KNN feature

AI8 hours ago

Building an NLU-powered search application with Amazon SageMaker and the Amazon ES KNN feature

AI8 hours ago

Building an NLU-powered search application with Amazon SageMaker and the Amazon ES KNN feature

AI8 hours ago

Building an NLU-powered search application with Amazon SageMaker and the Amazon ES KNN feature

Trending